2nd Order Nonlinear Differential Equation Solving with Central Difference Method?

10 vues (au cours des 30 derniers jours)
Furkan Celik
Furkan Celik le 1 Mar 2019
Commenté : Torsten le 17 Juil 2021
I am trying to solve a 2nd order non linear differential equation using central finite difference method but ı cant, it is a boundary value problem
y''+2y'+5y=8sinx+4cosx
y(0)=0 and y(30)=0
step is dx=0.5
How can ı solve it, would you give me some suggestion about that or any script ?

Réponses (3)

Torsten
Torsten le 1 Mar 2019
http://web.mit.edu/10.001/Web/Course_Notes/Differential_Equations_Notes/node9.html

Furkan Celik
Furkan Celik le 3 Mar 2019
Modifié(e) : Furkan Celik le 3 Mar 2019
Thank you so much for your response.. Im sharing script what i did.
clear all;
clc;
x = 0:3:30;
n = length(x);
y = zeros(1,n);
y(1,1)=0;
y(1,n)=0;
A = zeros(n-2);
B = zeros(1,n-2);
for i=1:n-2;
A(i,i) = 43;
end
for i=2:n-2;
A(i,i-1)=-2;
A(i-1,i)=4;
end
A
B(1,1)= 9*(8*sind(x(1,2))+4*cosd(x(1,2)));
B(1,n-2) = 9*(8*sind(x(1,n-1))+4*cosd(x(1,n-1)))
for i=2:n-3;
B(1,i)=9*(8*sind(x(1,i+1))+4*cosd(x(1,i+1)));
end
B
BB=B';
Y = inv(A)*BB;
YY=Y'
y(1,2:n-1)=YY(1,1:n-2)
plot(x,y);
  2 commentaires
TRUONG HONG
TRUONG HONG le 17 Juil 2021
Can i ask a question?
how can you find A(i,i) A(i,i-1) and A(i-1,1)
Thank u
Torsten
Torsten le 17 Juil 2021
All explained on the above website.

Connectez-vous pour commenter.


Thanawut Sumtib
Thanawut Sumtib le 5 Avr 2021
Use the finite difference method to solve y'' + 2 y' 3 y = 0 from t = 0 to 4 using a step size of 1 with y(0) = 1 and y’(0)=1.

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by