please, how can I fix this error; Index in position 1 exceeds array bounds (must not exceed 10001)

1 vue (au cours des 30 derniers jours)
Please, I am trying to plot a backward bifurcation diagram but having this errors, kind someone help me.
Errors
Index in position 1 exceeds array bounds (must not exceed 5001).
Error in BIFURCATIONHELLEN (line 50)
while (Root_array(f,1)==0 && Root_array(f,2)==0 && Root_array(f,3)==0)
Please, blow is the code I used. Thank you.
%plotting the bifurcation parameters showing both
%the disease free equilibrium and the endemic equilibrium point.
% to find A, B, C,D for sue in quadratic equation
% File name:BIFURCATION-HELLEN
% saved in Bifur Codes
% parameter values
R0_value=0.5:0.0001:1.5;
Root_array=zeros(length(R0_value),3);
pi=2041;k=0.45;alpha1=1.6;beta=0.35;c=2;alpha2=2;mu=0.02041;
phi=0.06;alpha3=1.3;gamma=0.05;nu=0.2;
d=0.3;alpha4=1.0;omega=0.21;
%eta=0.8;sigma=0.4;
% eta=1.0; mu= 0.055; kappa=10;
% d=0.1; omega=0.5;
% p=0.1; pi=30000; r1=4; gammaf=0.1; gammas =0.00002;
% epsi=0.002; r2=0.08;
% q=0.9;
% sigma=0.5;
hold on
for i=1:1:length(R0_value)
R0=R0_value(i);
R0=(c*beta*(alpha2*k*(gamma+mu)+alpha1*gamma*(1-k)))./(gamma+mu)*(nu+mu+d) ;
Y=(R0*(gamma+mu)*(nu+mu+d))./(c*beta);
p=(nu+mu+d);
A = alpha4*omega*alpha3*phi*pi*(k*alpha2+(1-k)*alpha1);
B= alpha4*omega*pi*Y+alpha3*mu*phi*k*alpha2*pi+alpha3*phi*(1-k)*alpha1*pi*mu+nu*alpha3*phi*k*alpha2*pi+nu*alpha3*phi*(1-k)*...
alpha1*pi+p*pi*alpha4*omega*phi*alpha3+p*(1-k)*alpha1*pi*...
alpha4*omega+alpha4*omega*nu*pi*phi*alpha3-alpha4*omega*nu*...
(1-k)*alpha1*pi-beta*c*(alpha4*omega*alpha3*phi*k*alpha2*...
pi+alpha4*omega*alpha4*phi*(1-k)*alpha1*pi);
C = mu*pi*Y+nu*pi*Y+p*pi*alpha4*(gamma+mu)*omega+p*pi*...
mu*phi*alpha3+p*(1-k)*alpha1*pi*mu+alpha4*omega*nu*pi*...
(gamma+mu)-beta*c*(pi*alpha4*omega*Y+alpha3*phi*mu*pi*...
(k*alpha2+(1-k)*alpha1));
D = mu*pi*(p*(gamma+mu)-Y);
poly=[A,B,C,D];
r =roots(poly);
len=length(r);
for t=1:1:len
if (imag(r(t))~=0) || (real(r(t))<0)
Root_array(i,t)=0;
else
Root_array(i,t)=r(t);
end
end
end
f=1;
while (Root_array(f,1)==0 && Root_array(f,2)==0 && Root_array(f,3)==0)
f=f+1;
end
R0_value_Cr=f;
for j=R0_value_Cr:1:length(R0_value)
Root_array(j,:) =sort(Root_array(j,:));
end
f1=R0_value_Cr;
while (Root_array(f1,2)~=0)
f1=f1+1;
end
R0_value_Cr2=f1;
Zero_1st=R0_value(1,1:R0_value_Cr2-1);
y_zero=zeros(1,length(Zero_1st));
Unstable =R0_value(1,R0_value_Cr:length(R0_value));
plot(Zero_1st,y_zero,'b','LineWidth',3)
plot(Unstable, Root_array(R0_value_Cr:length(R0_value),2),'b','LineWidth',3)
plot(Unstable,Root_array(R0_value_Cr:length(R0_value),3),'r--','LineWidth',3)
xlabel('R_r','FontSize',11)
ylabel('Force of Infection, \lambda^*_r','FontSize',11)
hold off

Réponses (1)

Yasasvi Harish Kumar
Yasasvi Harish Kumar le 5 Mar 2019
Hi,
This is the reason for your error. The condition is always true and f becomes 1002.
f=1;
while (Root_array(f,1)==0 && Root_array(f,2)==0 && Root_array(f,3)==0)
f=f+1;
end
One correction for this is,
%plotting the bifurcation parameters showing both
%the disease free equilibrium and the endemic equilibrium point.
% to find A, B, C,D for sue in quadratic equation
% File name:BIFURCATION-HELLEN
% saved in Bifur Codes
% parameter values
R0_value=0.5:0.0001:1.5;
Root_array=zeros(length(R0_value),3);
pi=2041;k=0.45;alpha1=1.6;beta=0.35;c=2;alpha2=2;mu=0.02041;
phi=0.06;alpha3=1.3;gamma=0.05;nu=0.2;
d=0.3;alpha4=1.0;omega=0.21;
%eta=0.8;sigma=0.4;
% eta=1.0; mu= 0.055; kappa=10;
% d=0.1; omega=0.5;
% p=0.1; pi=30000; r1=4; gammaf=0.1; gammas =0.00002;
% epsi=0.002; r2=0.08;
% q=0.9;
% sigma=0.5;
hold on
for i=1:1:length(R0_value)
R0=R0_value(i);
R0=(c*beta*(alpha2*k*(gamma+mu)+alpha1*gamma*(1-k)))./(gamma+mu)*(nu+mu+d) ;
Y=(R0*(gamma+mu)*(nu+mu+d))./(c*beta);
p=(nu+mu+d);
A = alpha4*omega*alpha3*phi*pi*(k*alpha2+(1-k)*alpha1);
B= alpha4*omega*pi*Y+alpha3*mu*phi*k*alpha2*pi+alpha3*phi*(1-k)*alpha1*pi*mu+nu*alpha3*phi*k*alpha2*pi+nu*alpha3*phi*(1-k)*...
alpha1*pi+p*pi*alpha4*omega*phi*alpha3+p*(1-k)*alpha1*pi*...
alpha4*omega+alpha4*omega*nu*pi*phi*alpha3-alpha4*omega*nu*...
(1-k)*alpha1*pi-beta*c*(alpha4*omega*alpha3*phi*k*alpha2*...
pi+alpha4*omega*alpha4*phi*(1-k)*alpha1*pi);
C = mu*pi*Y+nu*pi*Y+p*pi*alpha4*(gamma+mu)*omega+p*pi*...
mu*phi*alpha3+p*(1-k)*alpha1*pi*mu+alpha4*omega*nu*pi*...
(gamma+mu)-beta*c*(pi*alpha4*omega*Y+alpha3*phi*mu*pi*...
(k*alpha2+(1-k)*alpha1));
D = mu*pi*(p*(gamma+mu)-Y);
poly=[A,B,C,D];
r =roots(poly);
len=length(r);
for t=1:1:len
if (imag(r(t))~=0) || (real(r(t))<0)
Root_array(i,t)=0;
else
Root_array(i,t)=r(t);
end
end
end
f=1;
while (Root_array(f,1)==0 && Root_array(f,2)==0 && Root_array(f,3)==0 && f<length(Root_array))
f=f+1;
end
R0_value_Cr=f;
for j=R0_value_Cr:1:length(R0_value)
Root_array(j,:) =sort(Root_array(j,:));
end
f1=R0_value_Cr;
while (Root_array(f1,2)~=0)
f1=f1+1;
end
R0_value_Cr2=f1;
Zero_1st=R0_value(1,1:R0_value_Cr2-1);
y_zero=zeros(1,length(Zero_1st));
Unstable =R0_value(1,R0_value_Cr:length(R0_value));
plot(Zero_1st,y_zero,'b','LineWidth',3)
plot(Unstable, Root_array(R0_value_Cr:length(R0_value),2),'b','LineWidth',3)
plot(Unstable,Root_array(R0_value_Cr:length(R0_value),3),'r--','LineWidth',3)
xlabel('R_r','FontSize',11)
ylabel('Force of Infection, \lambda^*_r','FontSize',11)
hold off
Regards

Catégories

En savoir plus sur Nonlinear Dynamics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by