Using a trained FastRCNNObjectDetector, expected LABEL to be nonempty

13 vues (au cours des 30 derniers jours)
SALEM ALMARRI
SALEM ALMARRI le 9 Mar 2019
Commenté : Jingang Wu le 10 Nov 2019
Hello,
I used the following trained Fast R-CNN:
trainingData = objectDetectorTrainingData(gTruth)
net = vgg16;
layersTransfer = net.Layers(1:end-3);
% numClasses = numel(categories(imdsTrain.Labels));
layers = [
layersTransfer
fullyConnectedLayer(9,'WeightLearnRateFactor',10,'BiasLearnRateFactor',10)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-6, ...
'MaxEpochs', 10)
frcnn = trainFastRCNNObjectDetector(trainingData, layers , options, ...
'PositiveOverlapRange',[0.1 1], ...
'NegativeOverlapRange',[0 0.1])
The training was based on trainingData which was a an imported gTruth table which included around 8 different ROI labels for 4,000 images of 224x224 dimension.
Then I have saved the trained FRCNN to classify a sample image, the error I have getting is "Expected LABEL to be nonempty", and in workspace the labels is indeed empty, I am confused as to why this has happened though I have trained the network and everything.
load frcnn
detector = frcnn
I = imread('sampleImage.jpg')
imshow(I)
[bboxes,scores,labels] = detect(detector,I)
detectedI = insertObjectAnnotation(I,'Rectangle',bboxes,cellstr(labels))
figure
imshow(detectedI)
  1 commentaire
Jingang Wu
Jingang Wu le 10 Nov 2019
I used the pretrained detector in mathwork example "Object Detection Using Faster R-CNN Deep Learning". I encountered the same problem. I applied my own dataset and for the first image it was working well. But for other images, the bboxes was empty.

Connectez-vous pour commenter.

Réponses (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by