implementation for iterative wiener filter
10 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
This is my implementation in the iterative wiener filter in this paper : http://www.tsc.uc3m.es/~navia/LATDS07/IterativeWienerFilter.pdf
I wish it will help anyone
function wiener()
clc;
clear;
f=im2double(rgb2gray(imread('lena.jpg')));
imshow(f);
f=imresize(f,[32 32]);
figure,imshow(f)
[r c]=size(f);
h=fspecial('average');
g=imfilter(f,h,'circular');
s_avg = sum(sum(f))/(r*c);
SNR=90;
n_sigma=s_avg/(10^(SNR/20));
n=n_sigma*randn(size(f));
g=g+n;
[Nf,Mf]=size(g);
[Nh,Mh]=size(h);
L1=floor(Nh/2);
L2=floor(Mh/2);
H=zeros(Nf*Mf);
k=1;
for row=1:Mf,
for col=1:Nf,
hh=zeros(Nf,Mf);
hh(1:Nh,1:Mh)=h;
hh=circshift(hh,[col-1-L1,row-1-L2]);
H(k,:)=hh(:)';
k=k+1;
end
end
%%make vector of m^2*1 of the f,n,g
f=reshape(f',size(f,1)*size(f,2),1);
g=reshape(g',size(g,1)*size(g,2),1);
n=reshape(n',size(n,1)*size(n,2),1);
%%%calculate the autocorrelation matrix of f ,g,n
u=mean(g);
g1=autom(g-u);
Rg=toeplitz(g1);
n1=autom(n);
Rn=toeplitz(n1);%%%%%
Rf=Rg;
steps=10;
mse=zeros(1,steps);
for i=1:steps
B=Rf*H'*inv( (H*Rf*H') +Rn);
fHat=B*(g);
Rf=B*Rg*B';
im=reshape(fHat,[32 32]);
g=reshape(g,[32 32]);
%figure,imshow(im',[]);
mse(1,i) = sum(sum((im(:)-g(:))));
g=reshape(g',size(g,1)*size(g,2),1);
end
t=1:steps;
mse
plot(t,mse);
end
function [Rxx]=autom(x)
N=length(x);
Rxx=zeros(1,N);
for m=1: N+1
for n=1: N-m+1
Rxx(m)=(Rxx(m)+x(n)*x(n+m-1))/N-m+1;
end;
end
end
2 commentaires
Walter Roberson
le 1 Août 2012
Please read the guide to tags and retag this; see http://www.mathworks.co.uk/matlabcentral/answers/43073-a-guide-to-tags
Réponses (0)
Voir également
Catégories
En savoir plus sur Logical dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!