USing BVP solver to solve 2-D Laplace’s equation?
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have confusion about how to use the bvp solver to solve the 2-D Laplace’s equation (∇2u=∂2u∂x2+∂2u∂y2=0) with in a boundary (rectangular). Could anyone help or provide any website that can help to impement it ?
Thank you in advance.
2 commentaires
Réponses (1)
David Wilson
le 10 Avr 2019
If you mean bvp4c, then no it is not suitable since it solves boundary value ODEs in 1D, not PDEs in 2D. To solve Laplace's eqn in 2D, the easiest way is to use a finite difference grid. See https://au.mathworks.com/help/matlab/math/finite-difference-laplacian.html for more details.
2 commentaires
Torsten
le 11 Avr 2019
Approximate the partial derivatives by difference quotients and solve the resulting system of linear equations in the node values using "backslash" or an iterative method:
https://www.mps.mpg.de/phd/numerical-integration-partial-differential-equations-stationary-problems-elliptic-pde
Voir également
Catégories
En savoir plus sur Boundary Value Problems dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!