Discrete Wavelet Transform Features Extraction

8 vues (au cours des 30 derniers jours)
David Lee
David Lee le 10 Avr 2019
Hi. I am currently doing my project regarding Brain Computer Interfaces. The obtain EEG signal will undergoes a series of signal processing (Pre-processing-Features Extraction-Classification). May i know how can I obtain the average and standard deviation of a sub-band after DWT? My code as below but couldn't work.
Your help will be highly appreciated.
%Load the EEG signal (Sampling Frequency = 128Hz, 14 channel)
E1=load ('E:\Backup_Harddisk\Documents\David FYP References\PSM 1\Experiment\EEG-SSVEP-Experiment3\U001bi.mat');
%Select channel O2 and 1920 samples (15s long data)
SSS1=E1.eeg(3,1281:3200);
%Applying bandpass filter to filter out the unwanted signal <4 and >30Hz
yy1=bandpass(SSS1,[4 30],128);
%Apply DWT at 5 level of decomposition
waveletFunction = 'db2';
[C,L] = wavedec(yy1,5,waveletFunction);
cD11 = detcoef(C,L,1);
cD21 = detcoef(C,L,2);
cD31 = detcoef(C,L,3);
cD41 = detcoef(C,L,4);
cD51 = detcoef(C,L,5);
cA51 = appcoef(C,L,waveletFunction,5);
D11 = wrcoef('d',C,L,waveletFunction,1); %Gamma
D21 = wrcoef('d',C,L,waveletFunction,2); %Beta
D31 = wrcoef('d',C,L,waveletFunction,3); %Alpha
D41 = wrcoef('d',C,L,waveletFunction,4);
D51 = wrcoef('d',C,L,waveletFunction,5);
A51 = wrcoef('a',C,L,waveletFunction,5);
%Find the mean
av1 = mean(D31);
%Find the standard deviation
sdA1 = std(D31);

Réponses (0)

Catégories

En savoir plus sur EEG/MEG/ECoG dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by