speed of loop for calculating group version
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi every body. I have a code in matlab which I want to generalize it to group version:
the prior code is :
statsCont = all(max(abs(bsxfun(@minus, Beta(:,statsIt), Beta(:,1:statsIt))),[],1) ./ (Lambda(statsIt)+Lambda(1:statsIt)) - (3/(2*nobs*cStats)) <= 0);
Now I want to generalize it to group version, so if I replace previous code with:
for i=1:statsIt-1
temp_g=[];
for j=1:ngroups
temp_g=[temp_g ,norm( Beta(groups==j,statsIt)- Beta(groups==j,i),2)];
end
if((max(temp_g)/(Lambda(statsIt)+Lambda(i))) - (3/(cStats*nobs*2)) > 0)
statsCont= false;
break;
end
end
The speed of this code is much more slower than previous code. Could you please help me by a faster code?
0 commentaires
Réponses (1)
Jan
le 11 Avr 2019
Modifié(e) : Jan
le 11 Avr 2019
This is a very bad idea:
temp_g = [];
for j = 1:ngroups
temp_g = [temp_g ,norm(Beta(groups==j,statsIt) - Beta(groups==j,i),2)];
end
Letting an array grow iteratively is very expensive. If you do this e.g. for 1000 elements, Matlab have to allocate memory for sum(1:1000) elements: 1 at first, than 2 and the formerly existing elements is copied, then 3 elements and the 2 former elements are copied and so on. Solution: Pre-allocation!
While norm calculates the square root of each element, collecting the absolute values is sufficient, if you only need the largest norm value. Then you need 1 sqrt only.
for i=1:statsIt-1
temp_g = zeros(1, ngroups); % Allocate final array size
for j = 1:ngroups
match = (groups==j);
temp_g(j) = abs(Beta(match, statsIt)- Beta(match, i));
end
max_temp_g = sqrt(max(temp_g));
if max_temp_g / (Lambda(statsIt) + Lambda(i)) - (3 / (cStats*nobs*2)) > 0
statsCont = false;
break;
end
end
2 commentaires
Jan
le 12 Avr 2019
" but it is not as fast as I want."
I do not know, which speed you need. But I assume, my suggestion is faster than the original code. If you post the timings, it would be clearer, if the wanted speed is possible. I cannot test the code by myself, because you did not post some inputs data.
Why do you create all distances and search for the maximum value for a comparison instead of comparing the distances directly?
% UNTESTED!!!
for i = 1:statsIt-1
limit = (3 * (Lambda(statsIt) + Lambda(i)) / (cStats*nobs*2))^2;
for j = 1:ngroups
match = (groups==j);
temp_g = abs(Beta(match, statsIt)- Beta(match, i));
if temp_g > limit
statsCont = false;
break;
end
end
end
Now the calculation stops, when the first element exceeds the limit. This is cheaper then getting all elements and checking the maximum element.
But without input data, I cannot test if this code replies exactly the same as the original one.
Voir également
Catégories
En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!