![190425 094457-Figure 1.jpg](https://www.mathworks.com/matlabcentral/answers/uploaded_files/216434/190425%20094457-Figure%201.jpeg)
Coloring The Dots in biPlot Chart
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Yaser Khojah
le 25 Avr 2019
Commenté : ALESSANDRO D'ALESSANDRO
le 1 Déc 2020
I have created biplot as below and I'm looking for a way to distinguish the dots by different colors according to their group name. There are 12 groups and here are mydata and codes.
![PC1andPC2.png](https://www.mathworks.com/matlabcentral/answers/uploaded_files/216406/PC1andPC2.png)
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
figure(1)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure(3)
biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
0 commentaires
Réponse acceptée
Adam Danz
le 25 Avr 2019
Modifié(e) : Adam Danz
le 25 Avr 2019
The biplot() function has an output that lists handles to all objects in the plot. All you need to do is isolate the handles to the scatter points by referencing the handle tags and then assign color based on the category.
If you have any questions, feel free to leave a comment.
% Your code
categories = ['F1';'F2';'F3';'F4';'F5';'F6';'F7';'F8'];
load('MAT_ALL.mat')
% figure(1) (No need for this)
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
load('DataGroup.mat')
clusters = DataGroup(:,20);
[coefforth,score,~,~,explainedVar] = pca(MaT_All(:,9:16));
figure()
% Store handle to biplot
h = biplot([coefforth(:,1) coefforth(:,2)],'Scores',[score(:,1) score(:,2)],'Varlabels',categories);
% Identify each handle
hID = get(h, 'tag');
% Isolate handles to scatter points
hPt = h(strcmp(hID,'obsmarker'));
% Identify cluster groups
grp = findgroups(clusters); %r2015b or later - leave comment if you need an alternative
grp(isnan(grp)) = max(grp(~isnan(grp)))+1;
grpID = 1:max(grp);
% assign colors and legend display name
clrMap = lines(length(unique(grp))); % using 'lines' colormap
for i = 1:max(grp)
set(hPt(grp==i), 'Color', clrMap(i,:), 'DisplayName', sprintf('Cluster %d', grpID(i)))
end
% add legend to identify cluster
[~, unqIdx] = unique(grp);
legend(hPt(unqIdx))
You can select a different color map (I'm using 'lines'). : https://www.mathworks.com/help/matlab/ref/colormap.html#buc3wsn-1-map![190425 094457-Figure 1.jpg](https://www.mathworks.com/matlabcentral/answers/uploaded_files/216434/190425%20094457-Figure%201.jpeg)
![190425 094457-Figure 1.jpg](https://www.mathworks.com/matlabcentral/answers/uploaded_files/216434/190425%20094457-Figure%201.jpeg)
11 commentaires
Adam Danz
le 29 Nov 2020
You need to keep track of your random permutation indices and apply the same permutation to the species vector.
randIdx = randperm(size(iris, 1));
irisRandom = iris(randIdx, :);
species = species(randIdx);
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Data Distribution Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!