Computational time of qr, svd and eig?
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
How does the time for qr depend on the dimensions of the matrix m and n (does it depend on on the type of linear systems: overdetermined and underdetermined?) How about svd and eig? Does the time depend on whether you ask only for the eigenvalues (as in E=eig(A)) or also for the eigenvectors (as in [V,E]=eig(A))?
4 commentaires
Réponses (1)
KSSV
le 3 Mai 2019
%% Computational time for qr.
clear all; clc; close all;
m = 700;
n = 500;
N = 100 ;
t11 = zeros(N,1) ;
t21 = zeros(N,1) ;
for k = 1:N
B1 = randn(m,n); % m>n
B2 = randn(n,m); % m<n
t10 = tic;
[Q1,R1] = qr(B1);
t11(k) = toc(t10);
t20 = tic;
[Q2,R2] = qr(B2);
t21(k) = toc(t20);
end
mean(t11)
mean(t21)
j = 1:N;
figure(1);
plot(j,t11,'r',j,t21,'b')
xlabel('# of trial')
ylabel('Elapsed time')
legend('qr for m<n','qr for m>n')
axis([0 100 0 0.05])
1 commentaire
Voir également
Catégories
En savoir plus sur Linear Algebra dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!