Parallel implementation for Jacobi algorithm

10 vues (au cours des 30 derniers jours)
Sergio Zavota
Sergio Zavota le 16 Mai 2019
Modifié(e) : Sergio Zavota le 16 Mai 2019
Hi everyone
I implemented a parallel version of Jacobi's method for the resolution of a linear system, but doing some tests i noticed that the time to execute the function in parallel is very high compared to the time to execute the sequential function. This is strange because the Jacobi's method should be faster when executed with a parallel implementation.
I think i'm doing something wrong in the code. Please take a look:
function [x,niter,resrel] = Parallel_Jacobi(A,b,TOL,MAXITER)
[n, m] = size(A);
D = 1./spdiags(A,0);
B = speye(n)-A./spdiags(A,0);
C= D.*b;
x0=sparse(zeros(length(A),1));
spmd
cod_vett=codistributor1d(1,codistributor1d.unsetPartition,[n,1]);
cod_mat=codistributor1d(1,codistributor1d.unsetPartition,[n,m]);
B= codistributed(B,cod_mat);
C= codistributed(C,cod_vett);
x= codistributed(B*x0 + C,cod_vett);
%x = B*x0 + C;
Niter = 1;
TOLX = TOL;
while(norm(x-x0,Inf) > norm(x0,Inf)*TOLX && Niter < MAXITER)
if(TOL*norm(x,Inf) > realmin)
TOLX = norm(x,Inf)*TOL;
else
TOLX = realmin;
end
x0 = x;
x = B*x0 + C;
Niter=Niter+1;
end
end
Niter=Niter{1};
x=gather(x);
end
Below there are the tests:
%sequential Jacobi
format long;
A = gallery('poisson',20);
tic;
x= jacobi(A,ones(400,1),1e-6,2000000);
toc;
Elapsed time is 0.009054 seconds.
%parallel Jacobi
format long;
A = gallery('poisson',20);
tic;
x= Parallel_Jacobi(A,ones(400,1),1e-6,2000000);
toc;
Elapsed time is 11.484130 seconds.
Thank you for any help

Réponses (0)

Catégories

En savoir plus sur Creating and Concatenating Matrices dans Help Center et File Exchange

Produits


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by