why am i getting error on accuracy result with SVM?
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
here is the error:
Error using classreg.learning.FitTemplate/fillIfNeeded (line 612)
showplot is not a valid parameter name.
Error in classreg.learning.FitTemplate.make (line 124)
temp = fillIfNeeded(temp,type);
Error in ClassificationSVM.template (line 235)
temp = classreg.learning.FitTemplate.make('SVM','type','classification',varargin{:});
Error in ClassificationSVM.fit (line 239)
temp = ClassificationSVM.template(varargin{:});
Error in fitcsvm (line 316)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in Detect (line 174)
svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a Leaf Image File');
I = imread([pathname,filename]);
I = imresize(I,[256,256]);
%figure, imshow(I); title('Query Leaf Image');
% Enhance Contrast
I = imadjust(I,stretchlim(I));
figure, imshow(I);title('Contrast Enhanced');
% Otsu Segmentation
I_Otsu = im2bw(I,graythresh(I));
% Conversion to HIS
I_HIS = rgb2hsi(I);
%% Extract Features
% Function call to evaluate features
%[feat_disease seg_img] = EvaluateFeatures(I)
% Color Image Segmentation
% Use of K Means clustering for segmentation
% Convert Image from RGB Color Space to L*a*b* Color Space
% The L*a*b* space consists of a luminosity layer 'L*', chromaticity-layer 'a*' and 'b*'.
% All of the color information is in the 'a*' and 'b*' layers.
cform = makecform('srgb2lab');
% Apply the colorform
lab_he = applycform(I,cform);
% Classify the colors in a*b* colorspace using K means clustering.
% Since the image has 3 colors create 3 clusters.
% Measure the distance using Euclidean Distance Metric.
ab = double(lab_he(:,:,2:3));
nrows = size(ab,1);
ncols = size(ab,2);
ab = reshape(ab,nrows*ncols,2);
nColors = 3;
[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean', ...
'Replicates',3);
%[cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3);
% Label every pixel in tha image using results from K means
pixel_labels = reshape(cluster_idx,nrows,ncols);
%figure,imshow(pixel_labels,[]), title('Image Labeled by Cluster Index');
% Create a blank cell array to store the results of clustering
segmented_images = cell(1,3);
% Create RGB label using pixel_labels
rgb_label = repmat(pixel_labels,[1,1,3]);
for k = 1:nColors
colors = I;
colors(rgb_label ~= k) = 0;
segmented_images{k} = colors;
end
figure, subplot(3,1,1);imshow(segmented_images{1});title('Cluster 1'); subplot(3,1,2);imshow(segmented_images{2});title('Cluster 2');
subplot(3,1,3);imshow(segmented_images{3});title('Cluster 3');
set(gcf, 'Position', get(0,'Screensize'));
% Feature Extraction
x = inputdlg('Enter the cluster no. containing the ROI only:');
i = str2double(x);
% Extract the features from the segmented image
seg_img = segmented_images{i};
% Convert to grayscale if image is RGB
if ndims(seg_img) == 3
img = rgb2gray(seg_img);
end
%figure, imshow(img); title('Gray Scale Image');
% Evaluate the disease affected area
black = im2bw(seg_img,graythresh(seg_img));
%figure, imshow(black);title('Black & White Image');
m = size(seg_img,1);
n = size(seg_img,2);
zero_image = zeros(m,n);
%G = imoverlay(zero_image,seg_img,[1 0 0]);
cc = bwconncomp(seg_img,6);
diseasedata = regionprops(cc,'basic');
A1 = diseasedata.Area;
sprintf('Area of the disease affected region is : %g%',A1);
I_black = im2bw(I,graythresh(I));
kk = bwconncomp(I,6);
leafdata = regionprops(kk,'basic');
A2 = leafdata.Area;
sprintf(' Total leaf area is : %g%',A2);
%Affected_Area = 1-(A1/A2);
Affected_Area = (A1/A2);
if Affected_Area < 0.1
Affected_Area = Affected_Area+0.15;
end
sprintf('Affected Area is: %g%%',(Affected_Area*100))
% Create the Gray Level Cooccurance Matrices (GLCMs)
glcms = graycomatrix(img);
% Derive Statistics from GLCM
stats = graycoprops(glcms,'Contrast Correlation Energy Homogeneity');
Contrast = stats.Contrast;
Correlation = stats.Correlation;
Energy = stats.Energy;
Homogeneity = stats.Homogeneity;
Mean = mean2(seg_img);
Standard_Deviation = std2(seg_img);
Entropy = entropy(seg_img);
RMS = mean2(rms(seg_img));
%Skewness = skewness(img)
Variance = mean2(var(double(seg_img)));
a = sum(double(seg_img(:)));
Smoothness = 1-(1/(1+a));
Kurtosis = kurtosis(double(seg_img(:)));
Skewness = skewness(double(seg_img(:)));
% Inverse Difference Movement
m = size(seg_img,1);
n = size(seg_img,2);
in_diff = 0;
for i = 1:m
for j = 1:n
temp = seg_img(i,j)./(1+(i-j).^2);
in_diff = in_diff+temp;
end
end
IDM = double(in_diff);
feat_disease = [Contrast,Correlation,Energy,Homogeneity, Mean, Standard_Deviation, Entropy, RMS, Variance, Smoothness, Kurtosis, Skewness, IDM];
%%
% Load All The Features
load('Training_Data.mat')
% Put the test features into variable 'test'
test = feat_disease;
result = multisvm(Train_Feat,Train_Label,test);
%disp(result);
% Visualize Results
if result == 0
helpdlg(' Alternaria Alternata ');
disp(' Alternaria Alternata ');
elseif result == 1
helpdlg(' Anthracnose ');
disp('Anthracnose');
elseif result == 2
helpdlg(' Bacterial Blight ');
disp(' Bacterial Blight ');
elseif result == 3
helpdlg(' Cercospora Leaf Spot ');
disp('Cercospora Leaf Spot');
elseif result == 4
helpdlg(' Healthy Leaf ');
disp('Healthy Leaf ');
end
%% Evaluate Accuracy
load('Accuracy_Data.mat')
Accuracy_Percent= zeros(200,1);
for i = 1:500
data = Train_Feat;
%groups = ismember(Train_Label,1);
groups = ismember(Train_Label,0);
[train,test] = crossvalind('HoldOut',groups);
cp = classperf(groups);
svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
classes = ClassificationSVM(svmStruct,data(test,:),'showplot',false);
classperf(cp,classes,test);
Accuracy = cp.CorrectRate;
Accuracy_Percent(i) = Accuracy.*100;
end
Max_Accuracy = max(Accuracy_Percent);
sprintf('Accuracy of Linear Kernel with 500 iterations is: %g%%',Max_Accuracy)
4 commentaires
sabiya fatima
le 30 Juil 2020
i am getting error in these line. how did you solve please share. thank you
svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
classes = ClassificationSVM(svmStruct,data(test,:),'showplot',false);
classperf(cp,classes,test);
Accuracy = cp.CorrectRate;
thank you
i changed
classes = ClassificationSVM(svmStruct,data(test,:),'showplot',false);
to
classes = predict(svmStruct,data(test,:), 'showplot',true);
still getting errors
sabiya fatima
le 30 Juil 2020
classes = predict(svmStruct,data(test,:));
now my code is executed successfully.
Réponses (2)
sabiya fatima
le 30 Juil 2020
%% Evaluate Accuracy
load('Accuracy_Data.mat')
Accuracy_Percent= zeros(200,1);
for i = 1:500
data = Train_Feat;
%groups = ismember(Train_Label,1);
groups = ismember(Train_Label,0);
[train,test] = crossvalind('HoldOut',groups);
cp = classperf(groups);
%svmStruct =svmtrain(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
svmStruct = fitcsvm(data(train,:),groups(train),'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','linear')
%svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
%classes = svmclassify(svmStruct,data(test,:),'showplot',false);
classes = predict(svmStruct,data(test,:));
%classes = predict(svmStruct,data(test,:), 'showplot',true);
classperf(cp,classes,test);
Accuracy = cp.CorrectRate;
Accuracy_Percent(i) = Accuracy.*100;
end
Max_Accuracy = max(Accuracy_Percent);
sprintf('Accuracy of Linear Kernel with 500 iterations is: %g%%',Max_Accuracy)
5 commentaires
Walter Roberson
le 21 Nov 2021
Please format your code. Edit your posting, highlight your code, and click the '>' button in the toolbar. And then please put in appropriate line breaks.
I was about to do it for you, but I saw a comment character that I could not be sure of the intent for.
yanqi liu
le 20 Nov 2021
Modifié(e) : yanqi liu
le 21 Nov 2021
%% Evaluate Accuracy
load('Accuracy_Data.mat')
Accuracy_Percent= zeros(200,1);
for i = 1:500
data = Train_Feat;
%groups = ismember(Train_Label,1);
groups = ismember(Train_Label,0);
[train,test] = crossvalind('HoldOut',groups);
cp = classperf(groups);
%svmStruct =svmtrain(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
%svmStruct = fitcsvm(data(train,:),groups(train),'HyperparameterOptimizationOptions', struct('showplot',true), 'KernelFunction','linear')
svmStruct = fitcsvm(data(train,:),groups(train),'OptimizeHyperparameters','auto', ...
'HyperparameterOptimizationOptions',struct('ShowPlots', true), 'KernelFunction','linear')
%svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
%classes = svmclassify(svmStruct,data(test,:),'showplot',false);
classes = predict(svmStruct,data(test,:));
%classes = predict(svmStruct,data(test,:), 'showplot',true);
classperf(cp,classes,test);
Accuracy = cp.CorrectRate;
Accuracy_Percent(i) = Accuracy.*100;
end
Max_Accuracy = max(Accuracy_Percent);
sprintf('Accuracy of Linear Kernel with 500 iterations is: %g%%',Max_Accuracy)
2 commentaires
AKSHATA BHAT
le 20 Nov 2021
This is the error in the code in the attached file:
Error using classreg.learning.FitTemplate/fillIfNeeded (line 714)
showplot is not a valid parameter name.
Error in classreg.learning.FitTemplate.make (line 140)
temp = fillIfNeeded(temp,type);
Error in ClassificationSVM.template (line 235)
temp = classreg.learning.FitTemplate.make('SVM','type','classification',varargin{:});
Error in ClassificationSVM.fit (line 239)
temp = ClassificationSVM.template(varargin{:});
Error in fitcsvm (line 342)
obj = ClassificationSVM.fit(X,Y,RemainingArgs{:});
Error in DetectDisease_GUI>pushbutton5_Callback (line 297)
svmStruct = fitcsvm(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
Error in gui_mainfcn (line 95)
feval(varargin{:});
Error in DetectDisease_GUI (line 41)
gui_mainfcn(gui_State, varargin{:});
Error in matlab.graphics.internal.figfile.FigFile/read>@(hObject,eventdata)DetectDisease_GUI('pushbutton5_Callback',hObject,eventdata,guidata(hObject))
Error while evaluating UIControl Callback.
Voir également
Catégories
En savoir plus sur Support Vector Machine Classification dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!