Plot multivariable function,can't get the plot right ?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Huy Nguyen
le 22 Mai 2019
Commenté : Huy Nguyen
le 23 Mai 2019
I need to plot a multivariable (x,y) function in matlab and find its critical points. I plotted it but can't seem to get the correct plot as shown in the picture.
[x,y] = meshgrid(-5:.2:5);
f=3.*x.*exp(y)-x.^3-exp(3.*y);
fa1 = gradient(f, 0.2, 0.2); % Derivative
zv = contour(x,y,fa1, [0; 0]); % Critical Points
figure(1)
surf(x,y,f)
hold on
plot3(zv(1,2:end), zv(2,2:end), zeros(1,size(zv,2)-1), 'r', 'LineWidth',2)
hold off
0 commentaires
Réponse acceptée
Are Mjaavatten
le 23 Mai 2019
The main problem with your plot is simply that the large values of f for y > 0.5 dwarf the variations at lower values. Changing the plotting range solves this problem, I also rotate the axes to make the graph more similar to the original.
[x,y] = meshgrid(-1.5:.1:1.5,-2:0.1:0.5);
f=3.*x.*exp(y)-x.^3-exp(3.*y);
figure(1)
surf(x,y,f)
xlabel x
ylabel y
view(136,3)
The critical points are where both partial derivatives are zero. You can visually find one solution by plotting the zero contours for bot in the same graph:
[fa1,fa2] = gradient(f, 0.2, 0.2); % Derivative
figure(1);
contour(x,y,fa1, [0; 0]);
hold on;
contour(x,y,fa2, [0; 0]); % maximum where df/dx = df/dy = 0
grid on % we find one such point at (1,0]
hold off
You can also find analytical expressions for the partial derivatives and solve using fsolve from the optimization toolbox. Here I use an anonymous function J. z(1) is x and z(2) is y.
J = @(z) [3*exp(z(2))-3*z(1)^2;3*z(1)*exp(z(2))-3*exp(3*z(2))]
zc = fsolve(J,[2;0])
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Surface and Mesh Plots dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!