For J and L (J<L) I want to find that values of p and q which satisfies mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for all values of 0<=a<b<=J-1 and 0<=c<d<=L-1. If mod(((i^b-i^a)*(i^d-i^c)),j)==0 at any stage we break the loop and go for next values of p and q
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jasvinder Singh
le 5 Juin 2019
Commenté : Jasvinder Singh
le 5 Juin 2019
J=input('Value of J: ');
L=input('Value of L: ');
for j = L:6;
for i = 2:j-1;
for a=0:J-1;
for b=a+1:J-1;
for c = 0:L-1;
for d = c+1:L-1;
if mod(((i^b-i^a)*(i^d-i^c)),j)~=0
p_q=[i,j]
end
end
end
end
end
end
end
output:
p_q = 2 3
p_q = 2 3
p_q = 2 4
p_q = 2 4
p_q = 2 4
p_q = 2 5
p_q = 2 5
p_q = 2 5
p_q = 3 5
p_q = 3 5
p_q = 3 5
p_q = 4 5
p_q = 4 5
p_q = 2 6
and so on.
Here the required answer is p=2 and q=5; it is the only combination for which mod(((i^b-i^a)*(i^d-i^c)),j)~=0 for any values of a,b,c,d. But here it is showing so many answers. Kindly help me.
2 commentaires
Réponse acceptée
Matt J
le 5 Juin 2019
Modifié(e) : Matt J
le 5 Juin 2019
[a,b,c,d]=ndgrid(0:J-1,0:J-1, 0:L-1, 0:L-1);
k=a<b & c<d;
[a,b,c,d]=deal( a(k), b(k), c(k), d(k)); %all allowed combinations
p_q=cell(6,6);
for j = L:6
for i = 2:j-1
if all( mod( (i.^b-i.^a).*(i.^d-i.^c) ,j) )
p_q{i,j} =[i,j];
end
end
end
p_q=vertcat(p_q{:})
3 commentaires
Matt J
le 5 Juin 2019
But d cannot equal 3 when L=3. In your original post, you say that 0<=d<=L-1, so the maximum value d can assume is 2.
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!