convolution integral with dde

7 vues (au cours des 30 derniers jours)
Angie
Angie le 10 Juin 2019
Commenté : Satheesh oe le 20 Déc 2019
Hi guys, I am trying to solve this differential equation using dde. I have a problem with the integral term. In the code shown below, tau is the delay but I cannot just specify a constant value because it is also in the integral which goes from 0 to t. Does anywone know how to deal with it? Thank you!
%%
function sol = exer_3
sol = dde23(@exer3f,tau,[0; 0],[0, 10]);
figure
plot(sol.x,sol.y)
function v = exer3f(t,y,Z)
k = 125; m = 5; F = 1; w = 8;
c=@(t)exp(-t^2);
ylag = Z(:,1);
v = zeros(2,1);
v(1)=y(2);
v(2) = -(k*y(1) - F*cos(w*t) + integral(@(tau)c(tau).*ylag(1), 0, t,'ArrayValued',true))./m;
  4 commentaires
Torsten
Torsten le 12 Juin 2019
Modifié(e) : Torsten le 12 Juin 2019
If you substitute
y = u'
you arrive at the integro-differential equation
y'(t) = F/m * cos(w*t) - k/m*u(0) - 1/m * integral_{0}^{t} y(s)*(c(t-s)+k) ds
which has the required form.
Satheesh oe
Satheesh oe le 20 Déc 2019
Hi,
can i know why there is (+k) tem in the integral "(c(t-s)+k)".
Regards,
satheesh

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differential Equations dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by