PCA expansion random variables

2 vues (au cours des 30 derniers jours)
Jaime  de la Mota
Jaime de la Mota le 12 Juin 2019
Modifié(e) : Adam le 12 Juin 2019
Hello everyone.
Right now I am applying PCA to a set of observations. [coeffUV, score_vectorUV, latentUV, tsquaredUV, explainedUV, muUV]=pca(Z, 'Centered',false); being Z a gaussian correlation kernel.
As far as I understand, Score columns are the eigenfunctions. I have read in some books that if one multiplies the eigenfunctions (columns of score) by the origninal matrix data, gaussian random variables are obtained. Hower, if I write randvar=Z*score(:,1); and hist(randvar) I don't get a Gaussian histogram.
Can someone tell me what I am doing wrong?
Thanks.
  1 commentaire
Adam
Adam le 12 Juin 2019
Modifié(e) : Adam le 12 Juin 2019
The columns of the coeff output are the eigenvectors, as explained in
doc pca

Connectez-vous pour commenter.

Réponses (0)

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by