Effacer les filtres
Effacer les filtres

How to using bayesopt function for a GP model

3 vues (au cours des 30 derniers jours)
zhikun ruan
zhikun ruan le 20 Juin 2019
Commenté : zhikun ruan le 22 Juin 2019
Hi, I need to use bayesopt function for a GP model but it returns NaN and Error. I used the code below and the x is a 2 * n matrix and y is a 1*n matrix. Can anyone help me?
num = optimizableVariable('n',[1,10],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
results = bayesopt(@(params)fitrgp(x',y,'Sigma',0.1),[num,dst],'Verbose',0,...
'AcquisitionFunctionName','expected-improvement-plus')

Réponse acceptée

Don Mathis
Don Mathis le 21 Juin 2019
It looks like you're basing your code on this example, which is a good starting point: https://www.mathworks.com/help/stats/bayesopt.html?searchHighlight=bayesopt&s_tid=doc_srchtitle#bvamydy-2
But it seems you removed some important parts, like the call to kfoldLoss for example.
I would recommend starting with that example and making incremental changes to turn it into a solution to your problem. And reading the bayesopt documentation.
  1 commentaire
zhikun ruan
zhikun ruan le 22 Juin 2019
Thanks Don. I found your answers in other problems are very helpful. Thank you very much.

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Sequence and Numeric Feature Data Workflows dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by