How to normalise a FFT of a 3 variable function.

2 vues (au cours des 30 derniers jours)
J K
J K le 11 Juil 2019
Commenté : Rena Berman le 19 Sep 2019
I have this function:
input = exp(-((W-w_o).^2)/deltaW.^2).*exp(-(Kx.^2+Ky.^2)/(deltaK.^2)).*exp(1i.*sqrt((W/c).^2-(Kx.^2+Ky.^2)).*z(j));
this is then fourier transformed:
fourier = fftn(input)
I need to normalise it. Dividing it by length() is not giving good results. Could someone please help!

Réponses (3)

Matt J
Matt J le 11 Juil 2019
Modifié(e) : Matt J le 11 Juil 2019
To normalize so that the continuous Fourier transform is approximated, multiply by the sampling intervals, dT1*dT2*dT3
  7 commentaires
Matt J
Matt J le 12 Juil 2019
Modifié(e) : Matt J le 12 Juil 2019
Maybe also
F=F*sqrt(T1*T2*T3)/norm(F)
where T1,2,3 are the sampling distances.
J K
J K le 12 Juil 2019
Thank you so much!

Connectez-vous pour commenter.


Matt J
Matt J le 11 Juil 2019
Modifié(e) : Matt J le 11 Juil 2019
To normalize so that Parseval's equation holds, divide by sqrt(numel(input)).

Matt J
Matt J le 11 Juil 2019
Modifié(e) : Matt J le 11 Juil 2019
To normalize so as to obtain Discrete Fourier Series coefficients, divide by N=numel(input).

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by