An error occuered before neural network training

1 vue (au cours des 30 derniers jours)
kengo fujimura
kengo fujimura le 12 Juil 2019
Hi
I want to classify time series data by unsupervised learning
So,I'm making recurrent self organized neural network by Shallow Neural Network.
This error occuered
error: +
The dimensions of the matrix must match.(Original txt:行列の次元は一致しなければなりません。)
error: trainbu>train_network (line 196)
net.IW{i,j} = net.IW{i,j} + dw;
error: trainbu (line 52)
[out1,out2] = train_network(varargin{2:end});
error: network/train (line 353)
[net,tr] = feval(net.trainFcn,'apply',net,tr,data,calcMode.options,hints,net.trainParam);
error: SOM_test (line 79)
[net2,tr] = train(net2,Xs,{},Xi,Ai);
Program I wrote is this
[X, Y]= simpleseries_dataset;
net2.userdata='fujimura_kengo';
dimension1 = 5;
dimension2 = 5;
net2= layrecnet(1:2,10);
net2.numLayers=2;
net2.name=('Den-O');
net2.trainFcn='trainbu';
net2.numInputs=1;
net2.layers{1}.initFcn='initwb';
net2.layers{1}.netInputFcn='netsum';
%2層目の設定
net2.layers{2}.dimensions=[5 5];
net2.layers{2}.distanceFcn='linkdist' ;
net2.layers{2}.initFcn= 'initwb' ;
net2.layers{2}.netInputFcn= 'netsum' ;
net2.layers{2}.topologyFcn= 'hextop' ;
net2.layers{2}.transferFcn= 'compet' ;
net2.layers{2}.netInputParam='netprod';
net2.layers{2}.transferParam='elliotsig';
net2.layers{2}.distanceParam='dist';
net2.inputConnect=[1 ; 0 ];
net2.layerConnect=[1 0; 1 0 ];
net2.outputConnect=[0 1 ];
net2.biasConnect=[0;0];
net2.divideFcn=''
view(net2);
[net2,tr] = train(net2,Xs,{},Xi,Ai);
I want fix this error.But I can't ditect cause of error
If someone know how to fix,please teach me how to fix

Réponses (1)

Hiroyuki Hishida
Hiroyuki Hishida le 16 Oct 2019
Hi Kengo,
I tried reproduce your phenomemon, but it was failed since 'Xs', 'Xi' and 'Ai' are not defined.
Could you add more information?
Best
Hiroyuki

Catégories

En savoir plus sur 時系列、シーケンス、およびテキストを使用した深層学習 dans Help Center et File Exchange

Produits


Version

R2017a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!