MATLAB HELP ME PLS

1 vue (au cours des 30 derniers jours)
Triggs
Triggs le 18 Juil 2019
Commenté : Walter Roberson le 19 Août 2019
close all
clear
clc
format long
a=0;
b=10;
function [Distance] = trapezoidal(Speed, a, b, n)
h = (b-a)/n;
result = 0.5*Speed*a + 0.5*Speed*b;
for i = 1:(n-1)
result = result + Speed*(a + i*h);
end
[Distance] = h*result;
fprintf('ans=%6.6ff\n',Distance)
end
  1 commentaire
Walter Roberson
Walter Roberson le 19 Août 2019
It is not clear what the question is?

Connectez-vous pour commenter.

Réponses (1)

TADA
TADA le 18 Juil 2019
Modifié(e) : TADA le 18 Juil 2019
The trapezoidal integration method is a numeric calculation which approximates the area trapped between the curve and the x axis by dividing the curve to segments. the area of each segment is calculated by calculating the area of a trapeze entrapped by the coordinates of that segment.
function [auc, integration] = trapezoidal(x,y)
dx = diff(x);
integration = ((y(1:end-1)+y(2:end)) .* dx) / 2;
auc = sum(integration);
end
Or simply use trapz
The accuracy of this method is limited mainly by the size of the segments. smaller dx means more accurate results
so define your time vector with more elements:
t = linspace(0,10,1000);
  1 commentaire
TADA
TADA le 18 Juil 2019
to iteratively improve the approximation as required, I would start from a small number of segments, lets say 10 segments like you did
then check the error of the calculated distance
To calculate the actual distance you can integrate the polynomial:
% velocity polynomial coefficients
vp = [0.0011, -0.02928, 0.2807, -1.1837, -0.8283, 41.234, -3.3549];
tRange = [0 10];
nSegments = 10;
% call this in a loop that improves the precesion
while logical condition
% do something to improve precesion here
% calculate distance and error again
[d, err] = tryTrapz(tRange, vp, nSegments);
fprintf('Your message');
end
function [d, err] = tryTrapz(tRange, vp, nSegments)
t = linspace(tRange(1), tRange(2), nSegments);
d = trapz(t, polyval(vp, t));
% distance polynomial coefficients = integrated velocity
dp = polyint(vp);
theoreticalDist = polyval(dp, t(end));
err = 100*(theoreticalDist - d)/theoreticalDist;
end

Connectez-vous pour commenter.

Catégories

En savoir plus sur Just for fun dans Help Center et File Exchange

Tags

Aucun tag saisi pour le moment.

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by