plotting eigen vectors (nomal modes ) of a 9x9 matrix

4 vues (au cours des 30 derniers jours)
gild kone
gild kone le 18 Juil 2019
I have a matlab code for solving eigenvalues and eigenvectors problems but the ways is that i can normally plot differents eigenvalues of my matrix which depend on the varible x=-1:1. My problem is that I don't know how to plot in 3D the corresponding eigenvectors ( ie xlabel: x=-1:1, ylabel: y=-1:1 and Zlabel: z=eigenvectors )
This the correpondint code :
close all;clear all; U =0.9; f= 39; nx=f;T=1;
x=-3.086476993000499:3.096476993000599; y=x;
A=zeros(nx,nx); B=zeros(nx,nx); mat=zeros(nx,nx);
for kappa=1:numel(x) % nu=1:f-1
Rep = T.*(2.0.*cos(x(kappa)/2.0).*cos(x(kappa).*f/2.0)); Imp = 0.0;
Req = T.*(1.0 + cos(x(kappa))); Imq = T.*(sin(x(kappa)));
A(1,1)=U ; A(1,2)=sqrt(2.0)*Req; A(2,1)=sqrt(2.0)*Req;
B(1,2)=sqrt(2.0)*Imq; B(2,1)=-sqrt(2.0)*Imq;
for i=2:nx-1
A(i,i+1)=Req; A(i+1,i)=Req ;B(i,i+1)=Imq; B(i+1,i)=-Imq;
end
A(nx,nx)=Rep ; B(nx,nx)=Imp;
for i=nx:-1:1
for j=nx:-1:1
mat(i,j)=A(i,j);
mat(i,j+nx)=B(i,j);
mat(i+nx,j)=-B(i,j);
mat(i+nx,j+nx)=A(i,j);
end
end
[v,d0] = eig(mat); % eigenvectors and eigenvalues
%vv=v(:,kappa) ; v0=vv/norm(vv); C0=v0.*v0 % give us \c0\^2
dd=d(:,kappa); d0=dd/norm(dd); z=d0*d0' ; surf(z);
%d0(kappa,:)=eig(mat); for eigenvalue only
end
% plot(d0,'r-');

Réponses (1)

johnson wul
johnson wul le 15 Août 2019
hi kone. in your problem just use d=eig() to find your eigenvalues.

Catégories

En savoir plus sur Linear Algebra dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by