how to find complex polynomial solution
12 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to find roots of CDP, T's are constant real values
CDP1 =T_6*(1i*w).^6 +T_5*(1i*w).^5 +T_4*(1i*w).^4 +T_3*(1i*w).^3 +T_2*(1i*w).^2 +T_1*(1i*w) +T_0;
CDP2 =Tp_4*(1i*w)^.4 +Tp_3*(1i*w).^3 +Tp_2*(1i*w).^2 +Tp_1*(1i*w) +Tp_0;
CDP= CDP1*(1i*w).^1.4 +CDP2;
2 commentaires
Réponses (1)
Alex Mcaulley
le 30 Juil 2019
Then, after defining all the constant values:
syms w
CDP1 = T_6*(1i*w).^6 + T_5*(1i*w).^5 + T_4*(1i*w).^4 + T_3*(1i*w).^3 + T_2*(1i*w).^2 + T_1*(1i*w) + T_0;
CDP2 = Tp_4*(1i*w)^.4 + Tp_3*(1i*w).^3 + Tp_2*(1i*w).^2 + Tp_1*(1i*w) + Tp_0;
CDP = CDP1*(1i*w).^1.4 + CDP2;
sol = double(solve(CDP))
8 commentaires
Walter Roberson
le 30 Juil 2019
w^10 is okay. You then multiply by i and raise the result to 0.9 or 4.9. By the power law, (A*B)^C is A^C*B^C so (i*w^10)^0.9 is i^0.9 * (w^10)^0.9 and that second part is not polynomial
In the case where w is nonnegative real if you are willing to treat 0.9 as 9/10 exactly (which it is not) then you could multiply out to get w^9. But if that is what you want then you need to code it: with the 1i in there, matlab would never compute it that way. You would be getting a different branch of 0.9 power.
Voir également
Catégories
En savoir plus sur Polynomials dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!