Why is the size of the input weight matrix sometimes smaller than the input length when training a neural network?
7 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have a question regarding the size of the inut weight matrix for a neural network. My IW Matrix is smaller than expected and I don't know why. What I do:
net=patternnet(1);
[net,tr]=train(net,inputs,targets);
net.IW %size of the input weight matrices
ans =
[1x14 double]
[]
net.inputs.size %size of my inputs
ans =
[15]
net.layers.size %size of my hidden and output layer
ans =
[1]
[2]
As far as I understood, the size of my input weight matrix should be 1 (size of hidden layer) by 15 (length of input vectors). I tried it several times with different input sizes, but the size of IW sometimes is equal or 1-2 smaller than my input size.
I want to know why this happens and how I can match the weights to the input variables. Thanks in advance, Antje
2 commentaires
Réponse acceptée
Antje
le 6 Sep 2012
5 commentaires
enjy fikry
le 5 Mai 2017
how can i stop that from happening ? i don't want the training process to ignore these constant columns
Greg Heath
le 5 Mai 2017
You should.
They have zero variance.
Therefore they cannot contribute to learning.
However, they can confuse those who do not understand this.
Hope this helps.
Greg
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!