How to solve two differential equations using ode45
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Rahula Hoop
le 8 Août 2019
Réponse apportée : Shubham Gupta
le 21 Août 2019
My system of equations is as follows:
I need to solve these differential equations using ode45.
At t=0 the parameters have the following values: p1 = p2 = 0.25, c1 = c2 = 1, e1 = e2 = 0.7, over the interval [0,20].
The question goes on to ask which single parmeter should be changed to obtain an asymptotically stable steady state.
I am confused regarding the implementation of e and c in the formula as all other examples only have 2 variables, not 4... Help would be greatly appreciated.
Please see my Matlab script below:
clear
clc
f = @(t,y,c,e) [y(1); c(1)*y(1)*(1-y(1)) - e(1)*y(1); y(2); c(2)*y(2)*(1-y(1)-y(2)) - e(2)*y(2) - c(1)*y(1)*y(2)];
y0 = 0.25;
c(1) = 1;
c(2) = 1;
e(1) = 0.7;
e(2) = 0.7;
tspan = [0,20];
Y0 = [0.25;0.0125;0.25;-0.1125];
[T,Y,C,E] = ode45(f,tspan,Y0)
2 commentaires
Shubham Gupta
le 8 Août 2019
Are you sure, e1,e2,c1,c2 are time-variant and not constant ? If they are time-variant then there should be differential terms of those terms too. Since, there are only two differenctial eqaution and 6 unknown these differential equations become unsolvable by conventional methods.
If e1,e2,c1,c2 are constant then we will have 2 equation and 2 unknown, which can easily be solved using ode using following model :
clear
clc
c1 = 1;
c2 = 1;
e1 = 0.7;
e2 = 0.7;
f = @(t,y) [c1*y(1)*(1-y(1)) - e1*y(1);c2*y(2)*(1-y(1)-y(2)) - e2*y(2) - c1*y(1)*y(2)];
tspan = [0,20];
Y0 = [0.25;0.25];
[T,Y] = ode45(f,tspan,Y0);
I hope it helps !
Réponse acceptée
Shubham Gupta
le 21 Août 2019
Are you sure, e1,e2,c1,c2 are time-variant and not constant ? If they are time-variant then there should be differential terms of those terms too. Since, there are only two differenctial eqaution and 6 unknown these differential equations become unsolvable by conventional methods.
If e1,e2,c1,c2 are constant then we will have 2 equation and 2 unknown, which can easily be solved using ode using following model :
clear
clc
c1 = 1;
c2 = 1;
e1 = 0.7;
e2 = 0.7;
f = @(t,y) [c1*y(1)*(1-y(1)) - e1*y(1);c2*y(2)*(1-y(1)-y(2)) - e2*y(2) - c1*y(1)*y(2)];
tspan = [0,20];
Y0 = [0.25;0.25];
[T,Y] = ode45(f,tspan,Y0);
I hope it helps !
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!