Deep learning with vector output
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I need to learn a mapping from 28x28 images into a vector of 45 floating-point numbers. This is not really classification as the numbers range between -1 and 1.
When designing a deep neural network, what output layer could I use?
Best,
Samuli Siltanen
0 commentaires
Réponses (1)
Asvin Kumar
le 29 Août 2019
You can use the tanhLayer to obtain output values in the range of –1 to 1.
Here’s the documentation for more information: https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.tanhlayer.html
3 commentaires
Asvin Kumar
le 30 Août 2019
For the output layer, you can use a regressionLayer after the tanhLayer. This will produce predictions in the required range and compute the half-mean-squared-error loss.
Here's a link to the documentation: https://www.mathworks.com/help/deeplearning/ref/regressionlayer.html
Voir également
Catégories
En savoir plus sur Deep Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!