Matlab fit to three dimensions function
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi
I got three input vectors: x1, x2, x3 and output vectory y. How do i fit to my custom function?
y=a0+a1*x1+a2*x2+a3*x3+a11*x1^2+a22*x2^2+a33*x3^2+a12*x1*x2+a13*x1*x3+a23*x2*x3
Obviously I want to get parameters a1, a2, ...
For two variables (x1, x2) i can do it like:
f = fit([x1, x2], y, 'poly33');
But I'm struggling to do that for the function above.
Any help appreciated.
2 commentaires
the cyclist
le 28 Août 2019
Do you also have the Statistics and Machine Learning Toolbox available, or only the Curve Fitting Toolbox?
Réponses (2)
Bruno Luong
le 28 Août 2019
Modifié(e) : Bruno Luong
le 28 Août 2019
n = length(y);
A = [ones(n,1) x1(:) x2(:) x3(:) x1(:).^2 x2(:).^2 x3(:).^2 x1(:).*x2(:) x1(:).*x3(:) x2(:).*x3(:)] \ y(:)
0 commentaires
the cyclist
le 28 Août 2019
Modifié(e) : the cyclist
le 28 Août 2019
I would do it like this:
% Set the random number generator seed, for reproducibility
rng default
% Create some random data
N = 1000;
x1 = randn(N,1);
x2 = randn(N,1);
x3 = randn(N,1);
% Create a response variable with known coefficients, and some noise
y = 2 + 3*x1 + 5*x2 + 7*x3 ...
+ 11*x1.^2 + 13*x2.^2 + 17*x3.^2 ...
+ 19*x1.*x2 + 23*x1.*x3 + 29*x2.*x3 ...
+ 31*randn(N,1);
% Fit a quadratic model
mdl = fitlm([x1 x2 x3],y,'quadratic')
% % The above is equivalent to the following model, written out in full Wilkinson notation
% mdl = fitlm([x1,x2,x3],y,'y ~ x1 + x2 + x3 + x1^2 + x2^2 + x3^2 + x1:x2 + x1:x3 + x2:x3');
Almost all of this code is me creating the data, to illustrate everything. Since you have the data already, you should only need
mdl = fitlm([x1 x2 x3],y,'quadratic')
The resulting model object, mdl, has methods for lots of information about the model fit.
4 commentaires
Voir également
Catégories
En savoir plus sur Linear and Nonlinear Regression dans Help Center et File Exchange
Produits
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!