Height of one of the intersection of a line and a circle in MATLAB

1 vue (au cours des 30 derniers jours)
Anish Pradhan
Anish Pradhan le 29 Août 2019
Commenté : darova le 30 Août 2019
I have a line of length $r$. From each end, I am drawing two circles of radius $v$ where $v<r<2v$. Now, I am drawing a line through one end, cutting through the intersection lens area with a slope of $\Phi$. Now, [Fig. 1][1] describes the construction. I want to find the height of the first intersection point (G in the [Fig. 1][1]). From what I understand, when I am changing $\Phi$ from $0$ to $\cos^{-1}(\frac{r}{2v})$ (basically sweeping from the x-axis to the upper intersection point of two circles (D in the [Fig. 1][1])), the height of the point G would be equal to $\sqrt{v^2-\frac{r^2}{4}}$ (the length of CD in [Fig. 1][1]).
Now, I know how to do this. I calculated the intersection of $x^2+y^2=v^2$ and $y=(x+r) \tan(\Phi)$ . The solution for $y$ or height comes out to be $y_0=-\sin\Phi\left[\sqrt{v^2 - r^2\sin^2\Phi}-r\cos\Phi\right]$. My problem is, whenever I am putting this in MATLAB, when $v>\frac{r}{\sqrt{2}}$, the plot of $y_0$ doesn't reach $\sqrt{v^2-\frac{r^2}{4}}$ even when $\Phi =\cos^{-1}(\frac{r}{2v})$. I cannot understand where the problem is. Let me know if you can. My simplistic MATLAB code is posted below.
v=18;
r=24;
np=50;
alpha=acos(r*0.5/v);
Phai=linspace(0,alpha,np);
ynot=[];
xnot=[];
C=[];
for i=1:np
C(i)=sqrt(v^2 - (r*sin(Phai(i))).^2);
xnot(i)=-(r*(sin(Phai(i))).^2) - C(i).*cos(Phai(i));
ynot(i)=-sin(Phai(i)).*(C(i)-r*cos(Phai(i)));
end
figure(6)
plot(ynot)
hold on
plot(linspace(0,sqrt(v^2 - 0.25*r^2),np))

Réponse acceptée

darova
darova le 29 Août 2019
Here is what i achieved
Equation of a circle:
Equation of a line:
img1.png
  4 commentaires
Anish Pradhan
Anish Pradhan le 30 Août 2019
Hey, I understood what was the problem. When v is close to r, things get difficult about . Actually not difficult, but the actual quantity that I want is slightly more complex. Thanks for your help.
darova
darova le 30 Août 2019
I wanna be the first on the rating list here. Can you please help me and accept the answer?

Connectez-vous pour commenter.

Plus de réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Produits


Version

R2017b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by