ODE45 to solve a system of two coupled 2nd order ODEs
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Ricardo Machado
le 31 Août 2019
Commenté : David Goodmanson
le 2 Sep 2019
So this is my code for a system of coupled oscillators
syms x1(t) x2(t) k1 k2 m
Dx1 = diff(x1);
D2x1 = diff(x1,2);
Dx2 = diff(x2);
D2x2 = diff(x2,2);
Eq1 = D2x1 == (-(k1+k2)*x1+(k2)*x2)/m;
Eq2 = D2x2 == ((k2*x1)+((k1+k2)*x2))/m;
[V,Subs] = odeToVectorField(Eq1, Eq2);
ftotal = matlabFunction(V, 'Vars',{'t','Y','k1','k2','m'});
interval = [0 5];
y0 = [1 0; 0 0]; %initial conditions
ySol = ode45( @(t,Y)ftotal(t,Y,1,1,1),interval,y0);
% ftotal(t,Y,k1,k2,m)
tValues = linspace(interval(1),interval(2),5);
yValues = deval(ySol,tValues);
plot(tValues,yValues)
% plot(x,y)
I'm trying to numerically integrate and use the ode45 function to find the solution to this system of equations (Eq1 and Eq2). But somehow, my graphical solution is wrong and i don't get oscillations as expected.
0 commentaires
Réponse acceptée
David Goodmanson
le 31 Août 2019
Modifié(e) : David Goodmanson
le 31 Août 2019
Hi Ricardo,
I am inferring that you have the following system with fixed points S:
S---k1---M---k2---M---k1---S
Then eqn 1 is correct, but eqn 2 should be
Eq2 = D2x2 == ((k2*x1) - ((k1+k2)*x2))/m
i.e. with a minus sign. Then you get oscillations, which look a lot better when the linspace statement for tValues goes to, say, 100 points instead of 5.
The minus sign also makes eqn 2 symmetric with eqn 1 under interchange of x1 and x2, which reflects what is going on in the diagram.
If the system is actually S---k1---M---k2---M
with the right end free, then
Eq2 = D2x2 == ((k2*x1) - (k2*x2))/m
1 commentaire
David Goodmanson
le 2 Sep 2019
Hi Ricardo, it's a matter of selecting the right subarray from yValues. What have you tried so far?
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!