Thaks for your advise.
I corrected the subplot.
Yes, exactly I want the circles and triangled. But I need to combine both diagramms.
I will send you my Code. I just need to change the rho parameter. Here rho (AR Parameter is 0.8)
%Hybrid NKM under commitment
%% Step 1 define the parameters
%same Parameters as from the script
%Parameters
gam_f = 0.5
gam_b =0.5
beta= 1
gam_x = 0.2
lambda = 0.5
phi = 0.5 % IS Parameter for interest rate
sig = 1 % IS Parameter for interest rate
AR_par = 0.8
%% Step 2
% System is: (w;v)(+1) = A*[w;v] + [ 1;0;0;0;0]*eps
A11= [AR_par 0 0;0 0 0; 0 0 0];
A12= [ 0 0; 1 0; 0 1];
A21 =[ 0 -gam_f/(beta^2*gam_b) 0; -1/(beta*gam_f) 0 -gam_b/gam_f]; %Klammern nicht vergessen
A22 =[ 1/(beta^2*gam_b) gam_x/(beta^2*lambda*gam_b); -gam_x/(beta*gam_f) 1/(beta*gam_f)];
A = [ [A11 A12] ; [A21 A22] ]
%% Step 3
% using the Schur Decomposition to solve the state equations
% solve the system
disp('Schur decomposition')
[Z, T] = schur(A, 'complex')
disp('reorder eigenvalues in increasing order along the principal diagonal')
[Z T] = ordschur(Z,T, 1:5)
if abs(sum(sum(Z*T*Z'-A))) > 0.0001 && sum(sum(Z'*Z-eye(lenght(Z)))) > 0.0001
disp('Error in Schur decomposition')
end
disp('check Blanchard-Kahn')
abs_diag_T = abs(diag(T))';
%% Calculating the solution time path for nu, x and pi using the following law of motion:
% z(+1) = E[z(+1)] + Z_11^-1 * [1;0;0] * eps
T_11 = T(1:3,1:3)
Z_11 = Z(1:3,1:3)
Z_21 = Z(4:5,1:3)
T=1000000;
z_solution= zeros(3,T); % zeros because we have variables in i with t-1
w_solution= zeros(3,T); % zeros because we have variables in i with t-1
w_solution(:,1)=[ 1; 0; 0]; %initial jump
z_solution(:,1)=inv(Z_11)* w_solution(: ,1);%initial jump
v_solution= zeros(2,T);
i_solution= zeros(1,T); % nominal interest rate: IS umgestellt nach der Variable i.Hier liegt anscheinend das Problem.
for t= 2:T
z_solution(:,t)= T_11* z_solution(: ,t-1 );
w_solution(:,t)= Z_11 * z_solution(:,t);
v_solution(:,t)= Z_21 *inv(Z_11)* w_solution(:,t);
end
for t= 1:T-1
i_solution(:,t) =((1- phi)*v_solution(1,t+1)+phi*w_solution(2,t)-w_solution(2,t+1))*sig+ v_solution(2,t+1); % Jump in 1 anstatt 2. umgestellte IS-Kurve.
end;
%% plots
t=0: 20;
w_solution = real(w_solution);
v_solution = real(v_solution);
i_solution = real(i_solution);
figure
subplot(2,2,1); hold on;
plot(t, w_solution(2,t+2), 'k-', 'LineWidth',2)
xlabel(' t '); ylabel (' x '); title(' Output gap ')
axis([0 20 -4 2])
set(gca,'XTickLabel',{'0','5','10','15','20'})
box on
subplot(2,2,2); hold on;
plot(t, w_solution(3,t+2), 'k-', 'LineWidth',2)
xlabel(' t '); ylabel(' \pi '); title('Inflation')
axis([0 20 -0.5 1.5])
set(gca,'XTickLabel',{'0','5','10','15','20'})
box on
subplot(2,2,3); hold on;
plot(t, i_solution(t+1),'k-','Linewidth',2)
xlabel('t'); ylabel('i'); title('Interest rate')
axis([0 20 -1 3])
set(gca,'XTickLabel',{'0','5','10','15','20'})
box on
subplot(2,2,4); hold on;
plot(t, w_solution(1,t+1),'k-','Linewidth',2)
xlabel('t'); ylabel('nu'); title('Shock')
legend('\rho = 0','\rho = 0.8')
box on