NCA feature selection method
13 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
i tried to use NCA feature selection method to select the most relitive features from 16483 features, but i always got all features because the bestlambda and bestloss are always 0. how can work in this problem.
another question how can i set the lambdavals, is there a rule or something for linspace () parameter? as well how can i select the best value for 'tol' ?
cvx=cvpartition(size(Features,1),'kfold',5);
numvalidsets = cvx.NumTestSets;
n = cvx.TrainSize(1);
lambdavals=(linspace(0,20,20)./n;
lossvals = zeros(length(lambdavals),numvalidsets);
for w = 1:length(lambdavals)
for p =1:numvalidsets
train=1;
test=1;
indextrain=training(cvx,p);
for i=1:size(Features,1)
if indextrain(i)==1
XTrain(train,:)=Features(i,:);
YTrain(train)=label(i);
train=train+1;
else
XTest(test,:)=Features(i,:);
YTest(test)=label(i);
test=test+1;
end
end
TrainData= XTrain,YTrain;
TestData =XTest,YTest;
nca = fscnca(XTrain,YTrain,'FitMethod','exact', ...
'Solver','sgd','Lambda',lambdavals(w), ...
'IterationLimit',1,'Standardize',true);
lossvals(w,p) = loss(nca,XTest,YTest,'LossFunction','classiferror');
end
end
%%
meanloss = mean(lossvals,2);
[~,idx] = min(meanloss) % Find the index
bestlambda = lambdavals(idx) % Find the best lambda value
bestloss = meanloss(idx)
nca = fscnca(XTrain,YTrain,'FitMethod','exact','Solver','sgd',...
'Lambda',bestlambda,'Standardize',true,'Verbose',1);
tol = 0.55;
selidx = find(nca.FeatureWeights > tol*max(1,max(nca.FeatureWeights)))
Best_Features_train = XTrain(:,selidx);
1 commentaire
Alexis
le 29 Sep 2020
I have this same problem. Without an error message or warning it's not clear to me where to start. I have 14 features and over 5,000 observations.
Réponses (0)
Voir également
Catégories
En savoir plus sur Fit Postprocessing dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!