Spectral analysis of 1D elastic wave
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
As indicated in the: "wave propagation in structures: an FFT-based spectral analysis methodology", by James F. Doyle:
The spectral solution of 1D- elastic wave equation is as follow:
where is the wavenumber. C and D are the undetermined amplitudes at each frequency. Let the end of the bar at x = 0 be subjected to a force history F(t), that is, . E and A are the Elastic moduli and cross-sectional area respectively. The final solution is the inverse Fourier transform of the following expression:
is the Fourier transform of the applied force F(t).
The numerical example for the above problem is provided as follow:
Rod:
diameter=1 inch
density=0.00247 lb/ci
E=10.6e6 lb/si
Pulse, F(t):
0.000000 0
0.001000 0
0.001100 1000
0.001300 0
0.001500 0
(sec) (N)
I wrote the following code in MatLab:
clear all
close all
clc
d=1.0; %inch
A=pi/4*d^2;
rho=0.000247; %lb/inch3
E=10.6e6; %psi
%transform parameters:
n=2^15;
dt=5e-6;
fs=1/dt;
time_fcn = (0:n-1)/fs;
frequency = (0:n-1)*(fs/n);
omega=2*pi*frequency;
F=zeros(1,numel(time_fcn));
nn=find(time_fcn>=0.0011 & time_fcn<=0.0013);
F(nn)=-5e6*(time_fcn(nn)-0.0013);
plot(time_fcn,F)
Fn=fft(F);
plot(omega,Fn)
k=omega*sqrt(0.000247/10.6e6);
A=-Fn(2:numel(omega))./(1i*k(2:numel(omega))*E*A);
x=0;
G(2:numel(omega))= A.*exp(-1i*k(2:numel(omega))*x);
G(1)=simpsons(F,0,max(time_fcn),numel(time_fcn));
U= ifft(G);
plot(time_fcn*1000,U)
The result must be as follow:
However, I cannot get the same result as indicated in the abovementioned book. Can anybody tell me where is my mistake?
Thank you all,
Regards.
3 commentaires
Foil
le 10 Déc 2020
Hi folk,
Have you solved your problem?
I'm looking for a code to simulate the elastic wave propagation in an rod or plate or frame,...!
Would you please help me to find such a thing.
Regards.
Réponses (0)
Voir également
Catégories
En savoir plus sur Parametric Spectral Estimation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!