NCA feature selection method in deep learning
6 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
cvx=cvpartition(size(Features,1),'kfold',5);
numvalidsets = cvx.NumTestSets;
n = cvx.TrainSize(1);
lambdavals=(linspace(0,11,11))./n;
lossvals = zeros(length(lambdavals),numvalidsets);
for w = 1:length(lambdavals)
for p =1:numvalidsets
train=1;
test=1;
indextrain=training(cvx,p);
for i=1:size(Features,1)
if indextrain(i)==1
XTrain(train,:)=Features(i,:);
YTrain(train)=label(i);
train=train+1;
else
XTest(test,:)=Features(i,:);
YTest(test)=label(i);
test=test+1;
end
end
TrainData= XTrain,YTrain;
TestData =XTest,YTest;
nca = fscnca(XTrain,YTrain,'FitMethod','exact', ...
'Solver','sgd','Lambda',lambdavals(w), ...
'IterationLimit',5,'Standardize',true);
lossvals(w,p) = loss(nca,XTest,YTest,'LossFunction','classiferror');
end
end
%%
meanloss = mean(lossvals,2);
[~,idx] = min(meanloss)% Find the index
bestlambda = lambdavals(idx) % Find the best lambda value
bestloss = meanloss(idx)
nca = fscnca(XTrain,YTrain,'FitMethod','exact','Solver','sgd',...
'Lambda',bestlambda,'Standardize',true,'Verbose',1);
total = 0.05; %??????
selidx = find(nca.FeatureWeights > total*max(1,max(nca.FeatureWeights)))
Best_Features_train = XTrain(:,selidx);
i am using NCA feature selection method with five-fold cross validation to select the best features my question is how to choose the value of 'total' veriable?
and for lambdavals??
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Statistics and Machine Learning Toolbox dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!