Asked by Javier
on 12 Sep 2019

Hello all,

I am trying to sovle a two non-linear equation system using fsolve and dogleg method. My objective function along with its jacobian is like this

function [F jacF]= objective(x)

F(:,1) = ((((x(:,2)./10).*k).*(x(:,1)./100)).^2).*(rZ - Rs) +(( Cmax .* ( x(:,1)./100 ) ).^2).*( w.^2.*(rZ - Rs) ) - (((x(:,2)./10).*k).*(x(:,1)./100));

F(:,2) = (x(:,2).*k).^2.*(iZ - w.*Ls) + (x(:,2).*k).^2.*x(:,1).*((w.*Ls)./200) + x(:,1).*((w.*Ls)/200).*(w.*Cmax).^2 + (w.*Cmax).^2 .*(iZ -(w.*Ls));

if nargout > 1 % need Jacobian

jacF = [- k - (k.^2.*x(:,2).*x(:,1).*(Rs - rZ))./50, - (k.^2.*x(:,2).^2.*(Rs - rZ))./100 - (Cmax.^2.*w.^2.*(Rs - rZ))./100;

2.*k.^2.*x(:,2).*(iZ - Ls.*w) + (k.^2.*Ls.*x(:,2).*w.*x(:,1))./100,(Ls.*Cmax.^2.*w.^3)./200 + (Ls.*k.^2.*x(:,2).^2.*w)./200];

end

end

Then my configuration for fsolve looks like this

options = optimoptions('fsolve','Display','iter-detailed','PlotFcn',@optimplotfirstorderopt);

% options.StepTolerance = 1e-13;

options.OptimalityTolerance = 1e-12;

options.FunctionTolerance = 6e-11;

options.MaxIterations = 100000;

options.MaxFunctionEvaluations = 400;%*400;

options.Algorithm = 'trust-region-dogleg';%'trust-region'%'levenberg-marquardt';%

% options.FiniteDifferenceType= 'central';

options.SpecifyObjectiveGradient = true;

fun= @objective;

x0 = [x1',x2'];

% Solve the function fun

[gwc,fval,exitflag,output,jacobianEval] =fsolve(fun,x0,options);

Being the values of the equations

Rs =

0.1640

Ls =

1.1000e-07

Cmax =

7.0000e-11

w =

1.7040e+08

rZ =

12.6518

iZ =

14.5273

K =

0.1007

x0 =

70.56 0.0759

My problem comes because I don't understand why fsolve seems not to iteratate over x(:,1) as i was expecting. I do know that the solution for the above system and parameters should be x1=58.8 and x2=0.0775.

In order to test the convergence of the method I am setting as initial guess x0 = [x1*(1+20/100) 0.0759] = [70.56 0.0759] ( 20 percent error in x1 and a higer value on x2), but the solution given by fsolve is the initial point, why is this? Am I doing something incorrect in my settings?

Thanks in advance

Answer by Torsten
on 12 Sep 2019

Accepted Answer

k = 0.1007;

rZ = 12.6518;

Rs = 0.164;

Cmax = 7.0e-11;

W = 1.704e8;

iZ = 14.5273;

Ls = 1.1e-7;

a1 = (k/1000)^2*(rZ-Rs);

a2 = (Cmax/100*W)^2*(rZ-Rs);

a3 = -k/1000;

b1 = k^2*(iZ-W*Ls);

b2 = k^2*W*Ls/200;

b3 = W*Ls/200*(Cmax*W)^2;

b4 = (Cmax*W)^2*(iZ-W*Ls);

A = (a2*b1-b2*a3+a1*b4)/(a1*b1);

B = (-a3*b3+a2*b4)/(a1*b1);

disk = A^2/4-B;

if disk >=0

x21squared = -A/2+sqrt(disk);

x22squared = -A/2-sqrt(disk);

end

solx1 = zeros(4,1);

solx2 = zeros(4,1);

iflag1 = 0;

if x21squared >= 0

iflag1 = 1;

solx2(1) = sqrt(x21squared);

solx2(2) = -sqrt(x21squared);

end

iflag2 = 0;

if x22squared >= 0

iflag2 = 1;

solx2(3) = sqrt(x22squared);

solx2(4) = -sqrt(x22squared);

end

solx1 = zeros(4,1);

if iflag1 == 1

solx1(1) = -a3/(a1*solx2(1)^2+a2);

solx1(2) = -a3/(a1*solx2(2)^2+a2);

end

if iflag2 == 1

solx1(3) = -a3/(a1*solx2(3)^2+a2);

solx1(4) = -a3/(a1*solx2(4)^2+a2);

end

if iflag1 == 1

solx1(1)

solx2(1)

solx1(2)

solx2(2)

a1*solx1(1)*solx2(1)^2+a2*solx1(1)+a3

b1*solx2(1)^2+b2*solx1(1)*solx2(1)^2+b3*solx1(1)+b4

a1*solx1(2)*solx2(2)^2+a2*solx1(2)+a3

b1*solx2(2)^2+b2*solx1(2)*solx2(2)^2+b3*solx1(2)+b4

end

if iflag2 == 1

solx1(3)

solx2(3)

solx1(4)

solx2(4)

a1*solx1(3)*solx2(3)^2+a2*solx1(3)+a3

b1*solx2(3)^2+b2*solx1(3)*solx2(3)^2+b3*solx1(3)+b4

a1*solx1(4)*solx2(4)^2+a2*solx1(4)+a3

b1*solx2(4)^2+b2*solx1(4)*solx2(4)^2+b3*solx1(4)+b4

end

Javier
on 12 Sep 2019

Now I understood, yes I followed your advice and I came up with a bi-quadratic in x2, I was just solving by roots, I see the same answer!

I have reviewing the original equations too, and I think I missed a term in my matlab expression of F2, it should suppose to be like this

F(:,2) = ((((x(:,2)./10).*Kgeometry).*(x(:,1)./100)).^2).*( imgZin - w.*Ls * (1-x(:,1)./200) ) + (((x(:,1)./100).*Cmax).^2).*( w.^2*(imgZin - w*Ls .* (1-x(:,1)./200)) ) + w.*(Cmax.*(x(:,1)./100) );

This is likely to break the bi-quadratic equation that you made, then should I go again for an interative process right?

Thanks again

Torsten
on 13 Sep 2019

This is likely to break the bi-quadratic equation that you made, then should I go again for an interative process right?

No. Insert the expression from F1 for x1 in F2, multiply by the denominator, order according to powers of x2 and use MATLAB's "roots" to solve for x2. This will come out much more stable than using "fsolve".

Javier
on 13 Sep 2019

Hi Torsten, thanks again.

I have followed your advice, since F1 hasn't change, the relationship between x1 and x2 based on first equation is the same as you mentioned.

If I now replace the value of x1 into F2 as you suggests, I will get an polynom in order fith instead of fourth, which I will resolve with roots

Sign in to comment.

Opportunities for recent engineering grads.

Apply Today
## 7 Comments

## Torsten (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745078

## Javier (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745090

## Torsten (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745103

## Javier (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745115

## Torsten (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745124

## Javier (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745157

## Torsten (view profile)

## Direct link to this comment

https://fr.mathworks.com/matlabcentral/answers/480027-why-does-fsolve-seem-not-iterate-towards-the-solution#comment_745159

Sign in to comment.