Solving very stiff system of ODE's
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi
I have the following system of ODEs (a very stiff system!):
eoms = @(t,x) [
3.9e3 + 4.8e4*x(3) - 3.9e3*0.02*x(1);
3.9e3*0.2*x(1) - x(2)*3.3e3;
2.2e3*x(2) - 4.8e4*x(3) + heaviside(t-1)*x(5)*2.8e7;
1.1e3*x(2) - heaviside(t-1)*4.7e7*x(4);
heaviside(t-1)*(4.7e4*x(4) - 2.8e7*x(5)-9.0e6*x(5))];
x0 = [0 0 0 0 0];
tspan = [0 1];
[t, x] = ode23s(eoms, tspan, x0);
figure(1)
plot(t, x(:, 1))
When I run the script, I get the message: "Failure at t=1.000000e+000. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.552714e-015) at time t."
I'm not quite sure if I can do anything about it, but I thought that I should ask in here first. The timestep can't get any lower -- and I am already using a solver suitable for stiff systems. Do I have any options left?
Best, Niles.
0 commentaires
Réponses (1)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!