How to generate a random data vector that follows a constraint

1 vue (au cours des 30 derniers jours)
Saifullah Khalid
Saifullah Khalid le 29 Sep 2019
I want to generate random data vector where that follows this constrainst. where and is a constant. I would appreciate any help.

Réponse acceptée

Bruno Luong
Bruno Luong le 29 Sep 2019
Modifié(e) : Bruno Luong le 29 Sep 2019
This will generate uniform distribution (within to polytope)
N = 10;
Etotal = 0;
E = -log(rand(N+1,1));
E = E(1:N,:)./sum(E,1);
  2 commentaires
Bruno Luong
Bruno Luong le 29 Sep 2019
Modifié(e) : Bruno Luong le 29 Sep 2019
Here is a comparison of distribution with the two other methods proposed below to show the issue of non-uniformity if one doesn't pay attention
N = 2;
Etotal = 1;
p = 3e3;
Ebias = rand(1,p) .* randfixedsum(N,p,Etotal,0,Etotal);
E = rand(1,p).^(1/N)*Etotal .* randfixedsum(N,p,1,0,1);
E2 = -log(rand(N+1,p)); E2 = E2(1:N,:)./sum(E2,1);
subplot(2,2,1)
plot(Ebias(1,:),Ebias(2,:),'.');
title('rand * randfixedsum')
axis equal
subplot(2,2,2)
plot(E(1,:),E(2,:),'.');
axis equal
title('sqrt(rand) * randfixedsum')
subplot(2,2,3)
plot(E2(1,:),E2(2,:),'.');
axis equal
title('exponential method')
Saifullah Khalid
Saifullah Khalid le 30 Sep 2019
Bruno Luong, thank very much for detailed answer and the insight.

Connectez-vous pour commenter.

Plus de réponses (1)

Walter Roberson
Walter Roberson le 29 Sep 2019
Look in the File Exchange for Roger's randfixedsum(). Generate a vector with fixed sum . Multiply all of the elements by rand() to implement the <= part. (Though you might want to worry about the difficulty that rand() is never exactly 1, so if you generate a sum exactly equal to and multiply by rand() then the result can never exactly total
  3 commentaires
Walter Roberson
Walter Roberson le 29 Sep 2019
I was thinking of
rand() * randfixedsum(N,1,Etotal,0,Etotal)
but your comment might still apply.
Bruno Luong
Bruno Luong le 29 Sep 2019
Modifié(e) : Bruno Luong le 29 Sep 2019
Both give the same non-uniform pdf
The "correct" one is
E = rand()^(1/N)*Etotal * randfixedsum(N,1,1,0,1);

Connectez-vous pour commenter.

Catégories

En savoir plus sur Surrogate Optimization dans Help Center et File Exchange

Produits


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by