How does this Euler's Method for first ODE work?

6 vues (au cours des 30 derniers jours)
Patrick Smith
Patrick Smith le 3 Oct 2019
1 - function [x,y] = Euler(h, x0, y0, interval_length, func)
2 - nsteps = floor(interval_length/h) + 1;
3 - x = zeros(nsteps,1);
4 - y = zeros(nsteps,1);
5- x(1) = x0;
6- y(1) = y0;
7 - for i=2:nsteps
8 - y(i) = y(i-1) + h* func(x(i-1), y(i-1));
9 - x(i) = x(i-1) + h;
10 - end
Please explain how this program works line by line I am trying to understand it so I can learn how to use it properly.

Réponses (1)

darova
darova le 3 Oct 2019
Here are some basic concepts
1 - function [x,y] = Euler(h, x0, y0, interval_length, func)
% h - step in X direction (dx)
% x0 - initial position (start value)
% y0 - initial position (start value)
% interval_length - how far object will move from x0
% func - derivate function of y (dy/dx == y' == f(x,y))
2 - nsteps = floor(interval_length/h) + 1; % number of points (steps)
3 - x = zeros(nsteps,1); % preallocation (memory reserving for array)
4 - y = zeros(nsteps,1); % preallocation (memory reserving for array)
5- x(1) = x0; % initialization of array
6- y(1) = y0; % initialization of array
7 - for i=2:nsteps % for loop. Everything between FOR .. LOOP is repeated
8 - y(i) = y(i-1) + h* func(x(i-1), y(i-1)); % increase Y position
9 - x(i) = x(i-1) + h; % increase X position
10 - end
Google more about Euler Method

Catégories

En savoir plus sur Startup and Shutdown dans Help Center et File Exchange

Tags

Produits

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by