How can I solve a system of ODEs having coefficients in vector form using bvp4c ?
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Hi,
I am solving a system of 5 ODEs that contains known parameters, unknown parameters and some coefficients are of the form of vector.
%-------------------------------ODE system-----------------------------------%
function eqns = odes(x,y,e)
global Pr phi Ra Da Fr A1 A2 fdesh fdeshdesh thetadesh;
eqns = [y(2)
y(3)
(phi./Da).*y(2)+(2.*phi.*Fr./A1).*fdesh.*y(2)-(fdesh.*1./A1).*y(3)-(fdeshdesh.*1./A1).*y(1)+(2.*fdesh.*1./A1).*y(2)-(e./A1).*y(2)-(phi.*Ra./(A1^2).*A2).*y(4)
y(5)
-(Pr./A2).*(fdesh.*y(5)+thetadesh.*y(1)+e.*y(4))];
end
%------------------------------------------------------------------------------------------------
--------------------% fdesh, fdeshdesh and thetadesh are of vector form. these are the known solution of the governing equations .%----------------------
%----------------------------------------------------------------------------------------------
%--------------------------boundary conditions-----------------------------%
function res = ode_bc(ya,yb,e)
res = [ya(1)
ya(2)
ya(3)
ya(4)
yb(2)
yb(4)];
end
%-------------------------------------------------------------------------------------------------
I am getting this error:
Error using bvparguments (line 108)
Error in calling BVP4C(ODEFUN,BCFUN,SOLINIT):
The derivative function ODEFUN should return a column vector of length 5.
%-------------------------------------------------------------------------------------------------------
are the known solutions causing a problem to solve the system?
Thanks in advance.
0 commentaires
Réponse acceptée
darova
le 3 Oct 2019
Try this
function eqns = odes(x,y,e,x0)
global Pr phi Ra Da Fr A1 A2 fdesh fdeshdesh thetadesh; % global variables are not recommended
% x0 - vector of corresponding values for fdesh, fdeshdesh, thetadesh
% x0(end) should not be bigger than x(end)
fd = interp1(x0,fdesh,x);
fdd = interp1(x0,fdeshdesh,x);
thd = interp1(x0,thetadesh,x);
eqns = [y(2)
y(3)
(phi./Da).*y(2)+(2.*phi.*Fr./A1).*fd.*y(2)-(fd.*1./A1).*y(3)-(fdd.*1./A1).*y(1)+(2.*fd.*1./A1).*y(2)-(e./A1).*y(2)-(phi.*Ra./(A1^2).*A2).*y(4)
y(5)
-(Pr./A2).*(fd.*y(5)+thd.*y(1)+e.*y(4))];
end
10 commentaires
darova
le 9 Oct 2019
I don't think β patameter can be found. In the paper you attached everywhere is said that it can be obtained with guess
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Boundary Value Problems dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!