How to avoid permutation condition in Genetic Algorithm?
3 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I want to minimize my objective fuction with with 8 variables using genetic algorithm. Considering my problem, all my 8 variables are integer and the arrangenment of my variable wont affect my objective function.
Example: output like 1 2 3 4 5 6 7 8 or 8 7 6 5 4 3 2 1 wont affect my objective function. But the GA considering both this set of variable as a separate gene. Kindly someone let me know how to avoid this condition in GA.
Thanks.
0 commentaires
Réponses (1)
Walter Roberson
le 19 Oct 2019
Use A and b constraints to enforce that the values are in sorted order. x(1) < x(2) if [1 -1]*x(1:2).' < 0 so
A = [1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 1 -1 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 1 -1]
b = [0; 0; 0; 0; 0; 0; 0; 0]
However, that particular matrix does not enforce that the values are different: it would be satisfied with x(1) = x(2) for example. Fortunately when you work with integer variables you can rewrite x(1) < x(2) as x(1) + 1 < x(2) which is x(1)-x(2) < -1 so instead of all 0'is in b, make it all -1's and duplicates would be ruled out.
Voir également
Catégories
En savoir plus sur Genetic Algorithm dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!