Minimization of a function with unknown gradient but known sparsity pattern of its hessian
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Jan Valdman
le 29 Oct 2019
Réponse apportée : Jan Valdman
le 30 Oct 2019
Dear colleagues,
is there a fmincon option to minimize a function without the knowledge of its gradient but providing a sparsity pattern of a Hessian?
My function comes from a FEM formulation of an energy in nonlinear mechanics of solids and it is too difficult to differentiate analytically.
However the sparsity pattern of the hessian is easily available though a FEM connectivity of variables.
Is there a way to exploit it efficiently? If I run with 'Algorithm','quasi-newton', it seems not to accept 'HessPattern' option. An alternative would be to obtain an appriximative gradient (can you suggest one?) and use 'Algorithm','trust-region' insteady. Does anyone have experience with it?
Best wishes,
Jan
0 commentaires
Réponse acceptée
Alan Weiss
le 29 Oct 2019
Sorry, I am afraid that the available options don't work efficiently for your case. The HessPattern option is available only for the 'trust-region-reflective' algorithm, but for that algorithm you need to supply a derivative.
I am not sure what to suggest that you probably have not yet tried. For the default 'interior-point' algorithm you can try using the HessianApproximation option set to 'lbfgs' or {'lbfgs',Positive Integer}, but that does not directly use the sparsity pattern that you know. Or, and this seems crazy, you could code a finite difference gradient in your objective funtion, bypassing MATLAB's internal one, and then you could use the 'trust-region-reflective' algorithm with the HessPattern option. I am not sure that the 'trust-region-reflective' algorithm would satisfy you anyway, as it accepts only bound constraints or only linear equality constraints.
Sorry.
Alan Weiss
MATLAB mathematical toolbox documentation
5 commentaires
Catalytic
le 29 Oct 2019
Modifié(e) : Catalytic
le 29 Oct 2019
One possibility might be to use a 1-iteration call to fmincon itself to return the gradient. This uses Matlab's finite differencer and so might be faster than 3rd party implementations,
function [f,numerical_grad]=myObjective(x)
f=...
if nargout>1
options=optimoptions('fmincon','MaxIter',1,'SpecifyObjectiveGradient',false);
[~,~,~,~,~,numerical_grad] = fmincon(@myObjective,x,[],[],[],[],...
[],[],[],options);
end
end
Plus de réponses (1)
Voir également
Catégories
En savoir plus sur Solver Outputs and Iterative Display dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!