The symbolic code is not running
    7 vues (au cours des 30 derniers jours)
  
       Afficher commentaires plus anciens
    
syms  t x a p q r a1 a2 A pr
f(1)=x+p*x^2/2;g(1)=a*x+q*x^2/2;h(1)=1+r*x;
for i=1:5          %(Can I take i=0:5)
fa(i) = subs(f(i),x,t);ga(i) = subs(g(i),x,t);ha(i) = subs(h(i),x,t);
f(i+1) =f(i)+a1*int(int(int((diff(fa(i),t,3)+(fa(i)+ga(i))*diff(fa(i),t,2)+ a1*diff(fa(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
g(i+1) =g(i)+a1*int(int(int((diff(ga(i),t,3)+(fa(i)+ga(i))*diff(ga(i),t,2)+ a1*diff(ga(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
h(i+1) =h(i)+pr*a2*int(int((diff(ha(i),t,2)+(fa(i)+ga(i))*diff(ha(i),t,1)+ A*ha(i)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x));
end
f=f(1)+f(2)+f(3)+f(4)+f(5);
disp(f(i+1))
 figure(1)
fplot(x,f)               %% (for FIG.  a1=1;a2=2;A=1;pr=1;)
10 commentaires
  Walter Roberson
      
      
 le 10 Nov 2019
				You have triple nested integrals, but you only have bounds for one of the levels, which leads you open to issues about ending up with whatever constant of integration that the routines decide to throw in. Wouldn't it be better to use definite integrals for all of the calculations? At the very least you should be indicating the variable of integration.
Réponses (0)
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


