Simulating Stochastic Differential equations

2 vues (au cours des 30 derniers jours)
jacob Mitch
jacob Mitch le 14 Nov 2019
Modifié(e) : jacob Mitch le 14 Nov 2019
I am just learning about Stochastic differential equations if I have a SDE of dX(t) = -μ*X(t)*dt + σ*W(t) X0=x0>0 where W(t) is the Wiener process and I am trying to simulate it using
X(n+1)=X(n)−μX(n)∆t+σ*sqrt(∆t)*ηn, where ∆t = T /N :and ηn ∼ N (0, 1) normal distribution
So far I am here but not sure how to proceed and if I am simulating correctly and how the initial condition X0=x0>0 comes into it
dt_large = T / N;
t = linspace ( 0, T, N + 1 );
x = zeros ( 1, N + 1 );
x(1) = x0;
for j = 1 : n
dw = sqrt ( dt_large ) * randn ( 1, r );
x(j+1) = x(j) - x(j)* mu*dt_large + sigma * sum ( dw(1:r) );
end

Réponses (0)

Catégories

En savoir plus sur Stochastic Differential Equation (SDE) Models dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by