Simulating Stochastic Differential equations
2 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I am just learning about Stochastic differential equations if I have a SDE of dX(t) = -μ*X(t)*dt + σ*W(t) X0=x0>0 where W(t) is the Wiener process and I am trying to simulate it using
X(n+1)=X(n)−μX(n)∆t+σ*sqrt(∆t)*ηn, where ∆t = T /N :and ηn ∼ N (0, 1) normal distribution
So far I am here but not sure how to proceed and if I am simulating correctly and how the initial condition X0=x0>0 comes into it
dt_large = T / N;
t = linspace ( 0, T, N + 1 );
x = zeros ( 1, N + 1 );
x(1) = x0;
for j = 1 : n
dw = sqrt ( dt_large ) * randn ( 1, r );
x(j+1) = x(j) - x(j)* mu*dt_large + sigma * sum ( dw(1:r) );
end
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Stochastic Differential Equation (SDE) Models dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!