How to solve system of 2nd order differential equations using ode45
1 vue (au cours des 30 derniers jours)
Afficher commentaires plus anciens
siyeong Jang
le 16 Nov 2019
Réponse apportée : Stephan
le 16 Nov 2019
I have three 2nd order differential equations with my initial conditions and I'm trying to use the ode45 function in matlab to solve this.
I wish get (x,y) position in x-y plane
but i can`t simultaneously get x-position and y-position respect t.
%planar circular restricted 3 body problem
% %Initial Conditions
% x(0) = 35.0; %AU
% y(0) = 0; %AU
%Constants
G = 1;
m1 = 0.52; %solar mass
m2 = 0.33; %solar mass
r1= -21.3; %AU
r2= 33.7; %AU
ome=sqrt((m1+m2)/(-r1+r2)^3);
% x=x(1) x'=x(2) y=x(3) y'=x(4)
% x''=x*ome^2+2*ome*y'-m1*(x-r1)/(((x-r1)^2+y^2)^1.5)-m2*(x-r2)/(((x-r2)^2+y^2)^1.5)
% y''=y*ome^2-2*ome*x'-m1*y/(((x-r1)^2+y^2)^1.5)-m2*y/(((x-r2)^2+y^2)^1.5)
% x=x1 , x1'=x2 . y=x3 , x3'=x4
[t,x]=ode45(@crtbp,[0 35],[35;0;0;0.03]);
function dxdt=crtbp(t,x)
m1=0.52;
m2=0.33;
r1=-21.3;
r2=33.7;
ome=sqrt((m1+m2)/(-r1+r2)^3);
dxdt=[x(2); x(1)*ome^2+2*ome*x(4)-m1*(x(1)-r1)/(((x(1)-r1)^2+x(3)^2)^1.5)-m2*(x(1)-r2)/(((x(1)-r2)^2+x(3)^2)^1.5); x(4); x(3)*ome^2-2*ome*x(2)-m1*x(3)/(((x(1)-r1)^2+x(3)^2)^1.5)-m2*x(3)/(((x(1)-r2)^2+x(3)^2)^1.5)];
end
1 commentaire
darova
le 16 Nov 2019
Looks correct. What is the problem? You want you plot x vs y?
plot(x(:,1),x(:,3))
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Ordinary Differential Equations dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!