classification using CNN (trainNetwork)
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Why the validation accuracy of CNN using trainNetwork has been change in each rerun. It has been decreased from 89% to 39% in each re run the program.
Please could anyone answer me???
close all, clear all, clc;
output_folder=fullfile('datasets - Copy (2)','REMBRANDT') ; %creat file path
categories={'Grade_II - Copy','Grade_III - Copy','Grade_IV - Copy'};
imds=imageDatastore((fullfile(output_folder,categories)),'FileExtensions','.dcm','ReadFcn',@(x) dicomread(x),'LabelSource','foldernames');
[trainingset, testset]=splitEachLabel(imds, 0.8,0.2);
labelCount = countEachLabel(imds);
rng(1);
layers = [
imageInputLayer([128 128 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(1,'Stride',1)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(1,'Stride',1)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(3)
dropoutLayer
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'InitialLearnRate',0.01, ...
'MaxEpochs',40, ...
'Shuffle','every-epoch', ...
'ValidationData',testset, ...
'ValidationFrequency',60, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(trainingset,layers,options);
0 commentaires
Réponses (0)
Voir également
Catégories
En savoir plus sur Time-Frequency Analysis dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!