solving nonlinear overdetermined equations using newton raphson
30 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
can any one suggest me the matlab code for newton raphson to solve overdetermined equations given below
(X(1)-500)^2+(X(2)-900)^2+(X(3)-20200)^2-500^2
(X(1)-600)^2+(X(2)-1000)^2+(X(3)-20100)^2-1000^2
(X(1)-1000)^2+(X(2)-700)^2+(X(3)-23000)^2-1200^2
(X(1)-100)^2+(X(2)-800)^2+(X(3)-22000)^2-1300^2
solve X(1),X(2),X(3)
0 commentaires
Réponses (1)
arushi
le 3 Sep 2024
Hi Archa,
Given your system of equations, the goal is to find (X = [X(1), X(2), X(3)]) that minimizes the residuals of the equations. Here's how you can implement this approach in MATLAB:
function X = solveOverdeterminedSystem()
% Initial guess for X
X = [0, 0, 0];
% Tolerance and maximum number of iterations
tol = 1e-6;
maxIter = 100;
for iter = 1:maxIter
% Evaluate the function vector
F = [
(X(1)-500)^2 + (X(2)-900)^2 + (X(3)-20200)^2 - 500^2;
(X(1)-600)^2 + (X(2)-1000)^2 + (X(3)-20100)^2 - 1000^2;
(X(1)-1000)^2 + (X(2)-700)^2 + (X(3)-23000)^2 - 1200^2;
(X(1)-100)^2 + (X(2)-800)^2 + (X(3)-22000)^2 - 1300^2
];
% Evaluate the Jacobian matrix
J = [
2*(X(1)-500), 2*(X(2)-900), 2*(X(3)-20200);
2*(X(1)-600), 2*(X(2)-1000), 2*(X(3)-20100);
2*(X(1)-1000), 2*(X(2)-700), 2*(X(3)-23000);
2*(X(1)-100), 2*(X(2)-800), 2*(X(3)-22000)
];
% Compute the change in X using the normal equations approach
deltaX = -pinv(J' * J) * J' * F;
% Update X
X = X + deltaX';
% Check for convergence
if norm(deltaX) < tol
fprintf('Converged to [%f, %f, %f] after %d iterations.\n', X(1), X(2), X(3), iter);
return;
end
end
error('Did not converge within the maximum number of iterations');
end
Hope this helps.
0 commentaires
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!