Calculating a surface integral over a regular shape
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Oussama GASSAB
le 22 Nov 2019
Modifié(e) : Oussama GASSAB
le 24 Nov 2019
let's suppose a function given in polar coordinate F(r,phi) and our purpose is to calculate the surface integral, say F(r,phi)dA over the region S defined by
S={ |Z|<b , |z-z0|>a } where Z=r*exp(1j*phi). it means the regions between the circles |Z|=b , |z-z0|=a . However, F(r,phi) has singularities inside the circle |z-z0|=a . therefore, we are not able to use integral(over circle |Z|<b )-integral(over circle |z-z0|<a) .
your help and consideration are much appreciated.
3 commentaires
David Goodmanson
le 24 Nov 2019
Hi Oussama,
I am assuming that z and Z are basically the same thing, is that correct? Are z0 and 'a' such that the 'a' circle is totally contained in the b circle? Or the other way round? Is z0 real, or can it be complex?
Réponse acceptée
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!