Calculating a surface integral over a regular shape

4 vues (au cours des 30 derniers jours)
Oussama GASSAB
Oussama GASSAB le 22 Nov 2019
let's suppose a function given in polar coordinate F(r,phi) and our purpose is to calculate the surface integral, say F(r,phi)dA over the region S defined by
S={ |Z|<b , |z-z0|>a } where Z=r*exp(1j*phi). it means the regions between the circles |Z|=b , |z-z0|=a . However, F(r,phi) has singularities inside the circle |z-z0|=a . therefore, we are not able to use integral(over circle |Z|<b )-integral(over circle |z-z0|<a) .
your help and consideration are much appreciated.
  3 commentaires
David Goodmanson
David Goodmanson le 24 Nov 2019
Hi Oussama,
I am assuming that z and Z are basically the same thing, is that correct? Are z0 and 'a' such that the 'a' circle is totally contained in the b circle? Or the other way round? Is z0 real, or can it be complex?
Oussama GASSAB
Oussama GASSAB le 24 Nov 2019
yes z is the same as Z (typing mistake). yes exactly the z0 and 'a' are chosen such that the circle |Z-z0|=a is totally inside the bigger circle |Z|=b.

Connectez-vous pour commenter.

Réponse acceptée

Oussama GASSAB
Oussama GASSAB le 24 Nov 2019
Modifié(e) : Oussama GASSAB le 24 Nov 2019
i have solved by using the following, where F(x,y)=F(r,phi). i have used x-y coordinate and quad2d.
the result was so accurate.
y1= @(x) -sqrt(b^2-x.^2) ; y2=@(x) sqrt(b^2-x.^2) ;
y3= @(x) -sqrt(a^2-(x-z0).^2) ; y4= @(x) sqrt(a^2-(x-z0).^2) ;
intg1 = quad2d(F,-b,z0-a,y1,y2) ;
intg2 = quad2d(F,z0-a,z0+a,y1,y3) ;
intg3 = quad2d(F,z0-a,z0+a,y4,y2) ;
intg4 = quad2d(F,z0+a,b,y1,y2) ;
integ_total=intg1+intg2+intg3+intg4 ;

Plus de réponses (0)

Catégories

En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange

Produits


Version

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by