Why would the file size of a deep learning gradient become much bigger after saving as a .mat file?

5 vues (au cours des 30 derniers jours)
Hi,
I have a variable gradients which is the gradient of a deep learning model. From the code "whos gradients" you can see that it only requires 5742 bytes (i.e. 5.7 kB) to store. However, when I tried to save it as a .mat file, the file size becomes 13320098 bytes (i.e. 13.3 mB. Please refer to the code "file_size=file.bytes" ), which is more than 2000 times larger. May I ask the reason why, and how can I save the file with a size similar to 5.7kB?
Thanks!
My code:
%% Define Network Architecture
layers = [
imageInputLayer([1 1 100],'Normalization','none','Name','in')
transposedConv2dLayer([4 4],8*64,'Name','tconv1')
batchNormalizationLayer('Name','bn1')
reluLayer('Name','relu1')
transposedConv2dLayer([4 4],4*64,'Stride',2,'Cropping',1,'Name','tconv2')
batchNormalizationLayer('Name','bn2')
reluLayer('Name','relu2')
transposedConv2dLayer([4 4],2*64,'Stride',2,'Cropping',1,'Name','tconv3')
batchNormalizationLayer('Name','bn3')
reluLayer('Name','relu3')
transposedConv2dLayer([4 4],64,'Stride',2,'Cropping',1,'Name','tconv4')
batchNormalizationLayer('Name','bn4')
reluLayer('Name','relu4')
transposedConv2dLayer([4 4],1,'Stride',2,'Cropping',1,'Name','tconv5')
tanhLayer('Name','tanh')];
MyLGraph = layerGraph(layers);
myDLnet = dlnetwork(MyLGraph);
[dlZ, Y]=get_dlZ_Y();
gradients = dlfeval(@modelGradients, myDLnet, dlZ, Y);
whos gradients
save("gradients.mat","gradients");
file=dir("gradients.mat");
file_size=file.bytes
function [gradients] = modelGradients(myModel, modelInput, CorrectLabels)
CorrectLabels_transpose=transpose(CorrectLabels);
[modelOutput,state] = forward(myModel,modelInput);
modelOutput_mean=reshape(mean(mean(modelOutput)),1,100);
loss = -sum(sum(CorrectLabels_transpose.*log(sigmoid(modelOutput_mean/100))));
gradients = dlgradient(loss, myModel.Learnables);
end
function [dlZ, Y]=get_dlZ_Y()
rng(123); % seed
Z = randn(1,1,100,100,'single');
Y = randn(1,100,'single');
% Convert mini-batch of data to dlarray specify the dimension labels
% 'SSCB' (spatial, spatial, channel, batch).
dlZ = dlarray(Z, 'SSCB');
executionEnvironment="auto";
% If training on a GPU, then convert data to gpuArray.
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
dlZ = gpuArray(dlZ);
end
end
  1 commentaire
Walter Roberson
Walter Roberson le 2 Déc 2019
I wonder if you are configured to default to -v7.3 files for save()? There is a preference for that.

Connectez-vous pour commenter.

Réponse acceptée

Joss Knight
Joss Knight le 3 Déc 2019
The difference is that whos is unable to account for the fact that the data is all stored on the GPU, and is only showing CPU memory. Add the following
gradients = dlupdate(@gather, gradients);
and you will see parity between the numbers.
The answer is - you can't save 3.6 million 32-bit numbers in 5.7 kilobytes, no matter what magic you employ!

Plus de réponses (0)

Catégories

En savoir plus sur Image Data Workflows dans Help Center et File Exchange

Produits


Version

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by