How to apply The Kaiser rule in PCA?

8 vues (au cours des 30 derniers jours)
MUHAMMAD ALKHUDAYDI
MUHAMMAD ALKHUDAYDI le 11 Déc 2019
Modifié(e) : Shubh Sahu le 30 Jan 2020
Hi,
In MATLAB there is a bulid function to apply principle component analysis PCA. However, I have a problem on applying The Kaiser rule which drop all components with eigenvalues under 1. For Example I want to apply this method on the data:
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[coeff,newdata,latend,tsd,variance] = pca(X)
Please can some one help me on this. Many thanks.

Réponse acceptée

Shubh Sahu
Shubh Sahu le 30 Jan 2020
Modifié(e) : Shubh Sahu le 30 Jan 2020
Hey!
Instead of calculating PCA go with SVD. Take under the under root of sigmas 's' and now you have eigenvalues. Check for kaiser rule and select the column with eigenvalue less than 1
X = [1 2 3 4 5 ; -1 -3 -1 2 4 ; -2 1.5 3 2 -9 ; 1 -1 0.25 2.3 2.2];
[u,s,v] = svd(X)
Please refer to this link for further information

Plus de réponses (0)

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by