How to calculate the numerical integration that contains singular points?
5 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
T(x,y,afa) is a generated integrand, and the codes are as following.When I calculate M=arrayfun(@(D) integral2(@(x,y) T(x, y, D), 0,pi/2,-pi/6,pi/6,'reltol', 1e-6), afa) with varying afa=0:0.005:pi/6, the curve of output is not smooth and seems like noise. This is because the integrand has singular points. How to solve this problem? Many thanks!
function U=T(x,y,afa)
d1=1.34e-9;
d2=1.34e-9;
mu=5.5;
vh=1;
HBAR=1.05457266e-34;
ME=9.1093897e-31;
ELEC=1.60217733e-19;
Kh=2.95e10;
kc=sqrt(2.*ME.*ELEC./HBAR.^2);
k=kc.*sqrt(mu);
kh=sqrt(k.^2-(Kh-k.*sin(x).*cos(y)).^2-k.^2.*sin(x).^2.*sin(y).^2);
khg=sqrt(k.^2-(2.*Kh.*sin(afa./2).*sin(afa./2)-k.*sin(x).*cos(y)).^2-(2.*Kh.*sin(afa./2).*cos(afa./2)+k.*sin(x).*sin(y)).^2);
khpl=sqrt(k.^2-(Kh-k.*sin(x).*cos(y)).^2-k.^2.*sin(x).^2.*sin(y).^2+kc.^2.*vh);
khplpl=sqrt(k.^2-(Kh-k.*sin(x).*cos(y)).^2-k.^2.*sin(x).^2.*sin(y).^2+2.*kc.^2.*vh);
khgplpl=sqrt(k.^2-(2.*Kh.*sin(afa./2).*sin(afa./2)-k.*sin(x).*cos(y)).^2-(2.*Kh.*sin(afa./2).*cos(afa./2)+k.*sin(x).*sin(y)).^2+2.*kc.^2.*vh);
A2=exp(i.*khpl.*d1)./(exp(i.*(kh+khgplpl-khg).*d1)+exp(i.*khplpl.*d1));
U=abs(A2).^2;
end
0 commentaires
Réponses (1)
Raynier Suresh
le 24 Mar 2020
The “quadgk” function can handle singularity if the singularity is present at the boundary. In case if your singularity is not at the boundary you can split the integration domain to place the singularity at the boundary. Refer to the below links for more information,
Split integration domain: https://www.mathworks.com/help/matlab/math/singularity-on-interior-of-integration-domain.html
0 commentaires
Voir également
Catégories
En savoir plus sur Numerical Integration and Differentiation dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!