Solution of Recurrence relation to find a series expression

3 vues (au cours des 30 derniers jours)
MINATI
MINATI le 7 Jan 2020
Modifié(e) : MINATI le 7 Jan 2020
syms x k r f(x) g(x) a b beta b1 M L
syms F(k) G(k)
F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;b1=1/beta;
%%%%dnf=diff(f,x,n)
d1f=(k+1)*F(k+1);d2f=(k+1)*(k+2)*F(k+2);d3f=(k+1)*(k+2)*(k+3)*F(k+3);
d1g=(k+1)*G(k+1);d2g=(k+1)*(k+2)*G(k+2);d3g=(k+1)*(k+2)*(k+3)*G(k+3);
fd2f=symsum(((k-r+1)*(k-r+2)*F(r)*F(k-r+2)),r,0,k);%%% f*d2f
gd2g=symsum((k-r+1)*(k-r+2)*G(r)*G(k-r+2),r,0,k);fd2g=symsum((k-r+1)*(k-r+2)*F(r)*G(k-r+2),r,0,k);
gd2f=symsum((k-r+1)*(k-r+2)*G(r)*F(k-r+2),r,0,k); d1fd1f=symsum((k-r+1)*(r+1)*F(r+1)*F(k-r+1),r,0,k); %%(d1f)^2
d1gd1g=symsum((k-r+1)*(r+1)*G(r+1)*G(k-r+1),r,0,k);
%%%%%%%
eqn1=simplify((1+b1)*d3f-d1fd1f+fd2f+gd2f-(M+L)*d1f==0);
eqn2=simplify((1+b1)*d3g-d1gd1g+fd2g+gd2g-(M+L)*d1g);eqns=[eqn1 eqn2];
solve([eqns,{F(k+3),G(k+2)}])
f=sum(x^k*F(k),k,0,inf);g=sum(x^k*G(k),k,0,inf);
%%%%%%%%%
Using the above code (ofcourse after modification), I want to solve the recurrence relations {F(k+3),G(k+2)} which contains series expression
and using given condition (F(0)=0;F(1)=1;F(2)=a/2;G(0)=0;G(1)=1/2;G(2)=b/2;) to find f and g (SERIES FORM)
OR
the attched pdf (similar problem) can be followed
Thanks

Réponses (0)

Catégories

En savoir plus sur Mathematics dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by