How to Plot precision recall curve for semantic segmenttaion
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
I have done training and testing for semantic segmentation. I want to make a graph of my precision recall. I have got precision and recall values when validating images. but i don't know how to plot percurve charts. The following is the code that I made
pic = 8;
I = readimage(imdsTest, pic); %ib
Ib = readimage(pxdsTest,pic);
BC = labeloverlay(I, Ib,'Colormap',cmap,'Transparency',0.5);
C = semanticseg(I, net);
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.5);%cb
imshowpair (B, BC,'montage')
pixelLabelColorbar(cmap, classes)
title ('prediction vs groundtruth')
expectedResult = readimage(pxdsTest,pic);
actual = uint8(C);
expected = uint8(expectedResult);
imshowpair(actual,expected)
iou = bfscore(C,expectedResult);
[recall,precision,prediction]=bfscore(C,expectedResult)
table(classes',recall ,precision, iou)
the results of this program are as follows
ans =
Var1 recall precision iou
____________ _______ _________ _______
"crack" 0.34446 0.25696 0.34446
"background" 0.53501 0.60656 0.53501
to be able to make precision recall plots. What should I do? Please help me
1 commentaire
Réponses (1)
Chinmay Budhiraja
le 18 Juin 2020
Hi,
According to my understanding, you want to study the precision recall curve for a task. We use ROC curve (Receiver Operating Characteristic Curve) for the same. Consider the following example:
load simplecluster_dataset
net = patternnet(20);
net = train(net,simpleclusterInputs,simpleclusterTargets);
simpleclusterOutputs = sim(net,simpleclusterInputs);
plotroc(simpleclusterTargets,simpleclusterOutputs)
0 commentaires
Voir également
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!