Finding intrinsic dimensionality of data set

4 vues (au cours des 30 derniers jours)
Desiree
Desiree le 24 Jan 2020
Suppose I have a random (100,10) matrix. Here’s a code that gives the pca:
rng 'default'
X=rand(100,10);
X=bsxfun(@minus,X,mean(X));
[coeff,score,latent]=pca(X);
covmatrix=cov(X);
[V,D]=eig(covmatrix);
coeff
V
dataprincipalspace=X*coeff;
score
corrcoef(dataprincipalspace);
var(dataprincipalspace)'
latent
sort(diag(D),'descend')
If now I wish to know the intrinsic dimension of it, what should I add to my code? Help is appreciated!

Réponse acceptée

Gaurav Garg
Gaurav Garg le 3 Fév 2020
Hi,
latent (column vector) stores the eigenvalues of the covariance matrix of X.
Executing
cumsum(latent/sum(latent))
would tell you the % of data variance in each dimension.
Finally, the number of dimensions will depend on how much variance you wish to have in your data.
For example, in your case it comes out to be ~ 94% of variance upto 9th dimension.

Plus de réponses (0)

Catégories

En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by