Finding intrinsic dimensionality of data set
4 vues (au cours des 30 derniers jours)
Afficher commentaires plus anciens
Desiree
le 24 Jan 2020
Réponse apportée : Gaurav Garg
le 3 Fév 2020
Suppose I have a random (100,10) matrix. Here’s a code that gives the pca:
rng 'default'
X=rand(100,10);
X=bsxfun(@minus,X,mean(X));
[coeff,score,latent]=pca(X);
covmatrix=cov(X);
[V,D]=eig(covmatrix);
coeff
V
dataprincipalspace=X*coeff;
score
corrcoef(dataprincipalspace);
var(dataprincipalspace)'
latent
sort(diag(D),'descend')
If now I wish to know the intrinsic dimension of it, what should I add to my code? Help is appreciated!
0 commentaires
Réponse acceptée
Gaurav Garg
le 3 Fév 2020
Hi,
latent (column vector) stores the eigenvalues of the covariance matrix of X.
Executing
cumsum(latent/sum(latent))
would tell you the % of data variance in each dimension.
Finally, the number of dimensions will depend on how much variance you wish to have in your data.
For example, in your case it comes out to be ~ 94% of variance upto 9th dimension.
0 commentaires
Plus de réponses (0)
Voir également
Catégories
En savoir plus sur Dimensionality Reduction and Feature Extraction dans Help Center et File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!